RESEARCH SEMINAR IN INTERNATIONAL ECONOMICS

Gerald R. Ford School of Public Policy
The University of Michigan
Ann Arbor, Michigan 48109-3091
Discussion Paper No. 674

Population Aging and Structural Transformation

Javier Cravino
University of Michigan and NBER
\section*{Andrei A. Levchenko}
University of Michigan, NBER, and CEPR
Marco Rojas
University of Michigan

September, 2019

Recent RSIE Discussion Papers are available on the World Wide Web at: http://www.fordschool.umich.edu/rsie/workingpapers/wp.html

Population aging and structural transformation*

Javier Cravino University of Michigan
NBER

Andrei A. Levchenko
University of Michigan
NBER and CEPR

Marco Rojas
University of Michigan

September 2019

Abstract

We propose and quantify a novel mechanism behind the structural transformation process: older individuals devote a larger share of their expenditures to services, so the relative size of the service sector grows as the population ages. We document that for a large sample of countries, increases in population age are accompanied by the rise in the relative size of the service sector. We use household-level data from the US Consumer Expenditure Survey to show that the fraction of expenditures devoted to services increases with household age. We use a shift-share decomposition and a quantitative model to show that changes in the US population age distribution accounted for about a fifth of the increase in the share of services in consumption expenditures observed between 1982 and 2016. In our quantitative model, population aging plays a much larger role than changes in real income in accounting for the structural change observed in the US during this period.

Keywords: Aging, Structural Transformation, Deindustrialization.
JEL Codes: E2, O1, O4

[^0]
1 Introduction

Economic growth is accompanied by large reallocations of economic activity across broad sectors, a phenomenon known as structural transformation (Kuznets, 1957). In advanced economies, the structural transformation process is associated with a decline in the relative size of the Agriculture and Manufacturing sectors and a corresponding rise in the Service sector. Traditional theories that attempt to rationalize this process have relied on non-homothetic preferences with a high income elasticity for services (e.g. Kongsamut et al., 2001), or on a technology-driven increase in the relative price of services coupled with a low elasticity of substitution across sectors (Baumol, 1967; Ngai and Pissarides, 2007).

This paper proposes, documents, and quantifies a novel mechanism behind the structural transformation process: if older individuals devote a larger share of their expenditures to services, then the relative size of the service sector grows as the population ages. We show that, across a large sample of countries, increases in population age are accompanied by a rise in the relative size of the service sector. Using household-level data for the US, we document large differences in sectoral expenditure shares across households of different ages, with older households spending relatively more on services. We then use a shift-share decomposition and a quantitative model of structural change to quantify how much of the rise in the relative size of the service sector in the US over the period 1982-2016 can be accounted for by changes in population age.

To document how structural transformation is related to population aging across countries and time, we use multiple data sources following the Handbook chapter by Herrendorf et al. (2014). Across many countries and years, and several datasets, the service shares of employment, value added, and consumption expenditures are positively related to population aging. Importantly, this empirical regularity persists when controlling for the (possibly nonlinear) relationship between the service shares and income per-capita that has been emphasized in the previous literature. After controlling for income, a 1 percentage point increase in the fraction of population that is over 65 is associated with a 1.5 p.p. increase in the service shares of value-added and employment, and a 1 p.p. increase in the service share of consumption expenditures.

We then use household-level data from the US Consumer Expenditure Survey (CES) to document large differences in sectoral expenditure shares across households of different ages. Our data cover the 1982-2016 period and have been widely used to study how service expenditures vary with household income (see, e.g. Boppart, 2014; Comin et al., 2015). Older households spend significantly more on services, a pattern monotonic in household age throughout the age distribution. Compared to households in their

30s, the service expenditure shares of households in their 60s (resp. 80s) are 8 (resp. 27) percentage points higher. These differences are stable over the sample period, and are equally large when controlling flexibly for household income. The largest differences in expenditure patterns arise in Health, Utilities, and Domestic Care and Childcare, which are intensively consumed by the old, and in Vehicle Purchases and Gasoline which are intensively consumed by the young.

We quantify the contribution of population aging to structural change in the US in two complementary ways. First, we perform a simple within-between decomposition of the change in the service expenditure share between 1982 and 2016 (the sample period available in the CES). We write the change in the aggregate service expenditure share as a sum of two terms, one capturing changes in the service share of expenditures within each household-age group, and another capturing changes in the relative aggregate expenditure of the age groups. This decomposition shows that changes in the age-structure of the population accounted for 20% of the observed change in the service expenditure share over this period.

We then use our data along with a structural model to provide a complete decomposition of the observed structural change into the components due to technology (as captured by relative price changes), non-homotheticities due to changes in income, population aging, and a residual. We use a two-sector model with heterogenous households with preferences over goods and services, that extends the PIGL preferences recently introduced to the structural change literature by Boppart (2014) to allow for age-specific taste shifters. In the model, the household-specific expenditure share on goods depends on the relative price of goods vs. services, the household real expenditures, and the household taste shifter. An advantage of the PIGL preferences is that household-specific expenditures can be easily aggregated, so that the aggregate expenditure shares are a function of relative prices, aggregate income per capita, and a weighted average of the taste shifters, with weights that correspond to the relative importance of each age group in total expenditures.

The relative strengths of the mechanisms that determine structural change in the model depend on the elasticity of substitution across sectors, the income elasticity of each sector, and the relative size of the age-specific taste shifters. Following Boppart (2014), we use the model's structural equations for the household-specific expenditure shares and crosssectional household data to estimate the sectoral income elasticities, and use the same methodology to estimate age-specific taste shifters. We then use the structural equation for the aggregate expenditure shares and aggregate data on expenditures and prices to estimate the parameter governing the elasticity of substitution between goods and services.

Having estimated the preference parameters allows us to decompose the log change in the services share additively into the components driven by technology, income growth, aging, and a residual which can be interpreted as arising from age- and income-neutral changes in preferences over time. We find that most of the increase in the expenditure share of services during this period was due to the increase in the relative price of services, which accounts for two thirds of the overall change. Population aging also played a big role during this period, accounting for about 20 percent of the change. Residual taste shifts accounted for about 20 percent of the total as well. In contrast, changes in real income had almost no contribution to the observed changes in the service expenditure share. Finally, we combine our estimates of age-specific taste shifters for services with population estimates to project that the US service expenditure share will increase by a further $10 \log$ points between today and 2050. The impact of aging on structural transformation is set to become stronger in the future compared to its past role.

Our paper contributes to a large literature that attempts to rationalize the structural transformation process (see the recent survey by Herrendorf et al., 2014). Most theories focus on the non-homotheticity of the relative demand for services with respect to income (e.g. Kongsamut et al., 2001), or on changes in relative prices driven by differential longgrowth rates of productivity (e.g. Ngai and Pissarides, 2007) or capital deepening and factor intensity differences across sectors (Acemoglu and Guerrieri, 2008). Alternative recent theories for the structural transformation process have also emphasized the roles of international trade (Matsuyama, 2009; Uy et al., 2013; Cravino and Sotelo, 2018), home production (Buera and Kaboski, 2012), and changes in the labor supply driven by changes in schooling (Porzio and Santangelo, 2019). We contribute to this literature by proposing a novel and complementary demand-side mechanism for the structural transformation process.

Our analysis is also related to the quantitative literature that combines the mechanisms listed above to evaluate their relative importance. Herrendorf et al. (2013) show that the relative strength of the income and substitution forces depend on whether expenditures and prices are measured using expenditure or value-added data. Boppart (2014) and Comin et al. (2015) introduce the PIGL and Generalized CES preferences, respectively, and re-evaluate these mechanisms allowing for non-vanishing long-run income effects. Swiecki (2017) uses a framework that allows for international trade across countries and shows that substitution effects are most important in developed countries, while income effects are more important in accounting for the shift out of agriculture during the early stages of the development process. We contribute to this body of work by showing that expenditure patterns differ across the age distribution, and thus an important portion of
the structural change process may be driven by the population composition changes.
Finally, our paper builds on the literature documenting the differences in consumption patterns across the age distribution. Hobijn and Lagakos (2005) show that differences in spending patterns by age lead to differences in CPI inflation across age groups. Like us, they find that the largest disparities are in health care expenditures (disproportionally consumed by the elderly) and gasoline prices (disproportionally consumed by the young). Aguiar and Hurst (2013) analyze consumption expenditures on non-durable goods, and find large differences in consumption patterns of young vs. old households in food, nondurable transportation, and clothing and personal care. We contribute to this literature by showing how these differences in consumption patterns affect the structural transformation process.

The rest of the paper is organized as follows. Section 2 describes the relationship between population age and the share of services in the economy across countries, US households, and time. Section 2.2 quantifies the contribution of the observed population aging to structural change, and Section 3 concludes. The Appendix collects the robustness results.

2 Population aging and structural transformation: Facts

This section presents new empirical evidence documenting that population aging is systematically related to a shift in economic activity from Agriculture and Manufacturing sectors towards Service sectors. We organize our evidence in two sections, one showing how structural transformation is related to population aging across countries and time using aggregate data, and another showing how sectoral expenditure shares vary with household age using micro-data for the US.

2.1 Cross-country evidence

We start by describing how population aging is related to structural transformation across space and time. The empirical analysis follows the structure in the Handbook chapter by Herrendorf et al. (2014), who document how economic activity reallocates across Agriculture, Manufacturing, and Services as income per-capita rises. We use the same data sources and empirical strategy to document how this reallocation is related to population aging. In particular, we start by studying changes in sectoral value-added and employment shares for a broad set of developed countries using data from EU KLEMS. We then study changes in sectoral consumption shares using data from the OECD. Appendix B
shows that our findings extend to a broader set of countries using data from the World Development Indicators (WDI) for employment or the United Nations (UN) for value added.

2.1.1 Changes in sectoral employment and value-added shares

Our main data source on sectoral employment and value-added shares is EU KLEMS, which is compiled by the Groningen Growth and Development Center. The database reports hours worked and value added by sector for a sample of 20 developed countries over the 1970-2007 period. The advantage of these data relative to the WDI and the UN data presented in Appendix B is that employment is reported in terms of number of hours worked rather than in terms of the number of employed workers, and that the value-added data have been constructed from the national accounts of individual countries following a harmonized procedure that facilitates cross-country comparability. The disadvantage is that the data only cover 20 countries, which is why we repeat our analysis with a broader set of countries using the WDI and the UN data in the Appendix.

We conduct our analysis using two alternative measures of population age. First, we use the share of the population that is 65 or older, taken from the WDI. Alternatively, we use the average age in the country, computed from the World Bank's "Population estimates and projection" database. This database divides a country's population into 5year age brackets. To compute the average age, we multiply the midpoint of each bracket (e.g. 2 in the 0-4 years old bracket) times its population, then add across age groups, and finally divide this by the total population.

The left panel of Figure 1 reports the sectoral shares of hours worked and the share of population over 65, for each country-year in EU KLEMS. The share of hours in Agriculture decreases as population ages, while the share of hours in Services increases. The employment share in Manufacturing is somewhat hump-shaped. The right panel in the figure shows that the same pattern emerges if we use sectoral value added instead of sectoral hours worked shares. These figures indicate that economic activity reallocates towards the service sector as the population ages. Appendix Figure A1 shows that these patterns persist if we use the average age in the population instead of the the share of population over 65 as our age measure.

Figure 1: Sectoral shares of employment and value added

Hours Worked

Agriculture

Manufacturing

Services

Value Added

Agriculture

- Austria	- Belgium	- Denmark	\times	Spain	\triangle	Finland
- France	- Germany	\diamond Italy	-	Netherlands	\times	Portugal
- Sweden	+ United Kingdom	- Australia	-	Canada	*	Greece
\times Ireland	- Japan	* Korea		Luxemburg	+	USA

Notes: Each dot represents a country-year. The x-axis reports the share of the population that is 65 and over (source WDI). The y-axis reports the sectoral share in hours worked (left panel) and the sectoral shares in value added (right panel) using data from EU KLEMS.

Controlling for income: We now evaluate whether the correlation in Figure 1 is simply due to the fact that a country's population on average gets older as the country get richer. To do so, we establish whether the patterns in Figure 1 prevail after controlling for income per-capita. With this in mind, we estimate the following regressions:

$$
\begin{equation*}
\omega_{i, t}^{j}=\alpha_{i}^{j}+\beta^{j} A g e_{i, t}+\gamma^{j} g d p_{-} p c_{i, t}+\varepsilon_{i, t}^{j} . \tag{1}
\end{equation*}
$$

Here, $\omega_{i, t}^{j}$ is the share of employment or value-added in sector j in country i in year t, α_{i}^{j} is a country fixed effect, $g d p_{-} p c_{i, t}$ is the \log of GDP per-capita in country i year t, and $A g e_{i, t}$ is population age in country i in year t, measured either by the share of population that is over 65 or by the average age in the country. We cluster standard errors by country.

Table 1: Population aging and the sectoral shares of employment and value added

	Agriculture		Manufacturing		Services	
	(1)	(2)	(3)	(4)	(5)	(6)
Employment Share						
Share of pop 65+	$-1.958^{* * *}$	-0.501	$-1.321^{* * *}$	-1.006^{*}	$3.279^{* * *}$	$1.507^{* * *}$
	(0.436)	(0.401)	(0.325)	(0.490)	(0.601)	(0.495)
Log GDP per capita		$-0.133^{* * *}$		-0.0287		$0.162^{* * *}$
		(0.0381)		(0.0482)		(0.0219)
R^{2}	0.802	0.908	0.487	0.503	0.824	0.923
Value Added Share						
Share of pop 65+	$-1.012^{* * *}$	0.0207	$-1.533^{* * *}$	$-1.448^{* *}$	$2.545^{* * *}$	$1.427^{* * *}$
	(0.261)	(0.184)	(0.297)	(0.511)	(0.353)	(0.398)
Log GDP per capita		$-0.0935^{* * *}$			-0.00772	
		(0.0206)		(0.0574)		$0.101^{* *}$
		0.700	0.902	0.579	0.580	0.772
R^{2}	707	707	707	707	707	70.841
Observations						

Standard errors in parentheses clustered at the country level

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 1 reports the results of separately estimating equation (1) for each sector. Both the shares of hours worked and of value added are decreasing in income per capita in the Agriculture and Manufacturing sectors, but increasing in the Service sector, in line with the evidence surveyed by Herrendorf et al. (2014). The coefficient of interest β^{j} is negative for Agriculture and Manufacturing, and positive for Services, indicating that indeed aging is associated with a reallocation of economic activity towards services, even
after controlling for changes in income. These findings are robust to measuring shares both in terms of value-added or employment, and to using either of our two measures of population age.

The patterns that underlie these results can be visualized in Figure 2. The y-axis plots the residuals of the regressions of the employment and value added shares on the log of GDP per capita and country fixed effects. The x-axis shows the residuals of the share of population that is over 65 on those same variables. The changes in sectoral shares that are orthogonal to the changes in income per capita are strongly correlated to the changes in population age that are orthogonal to income per-capita. Appendix Figure A2 shows that these patterns are robust to using the average age in the population instead of the share of population over 65 as our age measure. In addition, Appendix Table A1 shows that we obtain very similar findings if we also control for potential non-linear effects of income per capita.

Figure 2: Residualized sectoral shares of employment and value added

Notes: Each dot represents a country-year. The x-axis reports the residual of a regression of the share of the population that is 65 on GDP per capita and country fixed-effects. The y-axis reports the residual of a regression of the sectoral share in hours worked (left panel) and the sectoral shares in value added (right panel) on GDP per capita and country fixed-effects. Bata sources are the same as in Figure 1.

2.1.2 Changes in consumption shares

This section documents how population aging relates to changes in sectoral consumption shares using data from the OECD Statistics. Consumption shares can differ from value added and employment shares since they do not include investment nor exports, and they do include imports. OECD statistics report consumption for 11 countries in 16 expenditure categories for the 1970-2007 period. We follow Herrendorf et al. (2014) and classify Food Consumption as Agriculture, Semi-, Durable-, and Non-Durable Goods minus Food Consumption as Manufacturing, and the remaining categories as Services.

The left panel in Figure 3 plots the sectoral consumption shares and share of population over 65 for each country-year pair in our sample. The right panel in the figure shows the residualized shares from a regression that controls for income per capita and country fixed effects, analogous to those in Figure 2. The figures show that consumption in Agriculture and Manufacturing products decline with population age, while the share of Service consumption increases with population age. This is true also after controlling for income (right panel). Appendix Table A2 reports the underlying regression coefficients. Appendix Figure A3 shows that the results are virtually unchanged if we use average age.

Figure 3: Sectoral consumption shares

Notes: Each dot represents a country-year. The x-axis reports the actual (left panel) and the residualized (right panel) share of the population that is 65 and over. The y-axis reports the sectoral share in actual (left panel) and the residualized (right panel) sectoral shares in consumption using data from OECD.

2.2 Household-level evidence

We now show how sectoral expenditure shares vary with household age using micro-data for the US. Our data come from the U.S. Consumer Expenditure Survey (CES) and cover the 1982-2016 period. We use the Interview module of the CES, which surveys about 12,000 households per year. The Interview module collects households' responses about their purchases across 350 distinct expenditure categories, as well as other demographic information. Each household is interviewed for up to 4 consecutive quarters, and the expenditure data are collected at the household level. We use the average age of household members as the measure of age for our baseline analysis. Appendix C shows that our results are robust to using the reference person's age, i.e. age of the household head. ${ }^{1}$

For the bulk of our analysis, we aggregate expenditures into goods and services following Aguiar and Bils (2015) and Comin et al. (2015). ${ }^{2}$ We focus on how the share of non-housing service expenditures to the overall non-housing expenditures changes with household age. We do not include housing in expenditure because in the CES the rental value of owner-occupied housing is self-reported and thus may not be directly comparable to rent payments for renters. Since home ownership rates change substantially over the life cycle, the switches between owner-occupied implicit rent value and actual paid rent may complicate the comparison across age groups. Appendix C reports results including housing in the analysis and shows that the treatment of housing does not alter our conclusions.

Figure 4 plots the cumulative change in the aggregate expenditure share on services in the CES data. Consistent with the aggregate evidence on structural transformation, the service expenditure share rises in the CES, by about 18 log points over this period. Appendix Table A5 reports the trends in broad service expenditure categories. The rise in the healthcare is the main, but not the only, driver of the upward trend in the service expenditure. Other categories showing substantial proportional increases are Cash Contributions and Education. Food Away From Home, Utilities, and Domestic Services and Childcare also rise.

Figure 5 plots the expenditure share on services across households of different ages. Each line represents a different period for which CES is available. There is a clear positive

[^1]Figure 4: Service consumption in the CES

Notes: Authors' calculations based on the Consumer Expenditure Survey. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.
monotonic relationship between the service expenditure share and the average age of the household members. The differences are large: service expenditure shares of households in their 60 s are about 25 percent larger than for the households in their $30 \mathrm{~s}(0.5 \mathrm{vs}$. 0.4). Households in their 80s have expenditure shares in services that are almost 70% higher than those in their $30 \mathrm{~s}(0.68$ vs 0.40$)$. These patterns are very stable over time. While later periods tend to feature higher service expenditure shares overall, the cross-age differences are pronounced in all time periods.

Controlling for income: A potential caveat with the evidence in Figure 5 is that these patterns may arise from income differences across age groups. This section shows that this is not the case. Figure 6 plots the age-service expenditure share relationships separately for each quartile of the income distribution. It is clear that the relationship is about equally strong within broad income groups. Appendix Figure A6 shows a similar pattern if we group households by income deciles instead of quartiles.

Figure 5: Service consumption by average age of household members

Notes: Authors' calculations based on the Consumer Expenditure Survey. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.

To control for income more systematically, we estimate a regression that projects the service expenditure shares on age dummies, income decile dummies, and region-time fixed effects:

$$
\begin{equation*}
\omega_{t}^{s, h}=\delta^{a}+\delta^{i n c}+\gamma X_{r, t}^{h}+\delta_{r, t}+\varepsilon_{t}^{s, h} . \tag{2}
\end{equation*}
$$

Here $\omega_{t}^{s, h}$ is the service expenditure share of household h at time t, δ^{a} are household age group dummies and $\delta^{i n c}$ are income decile dummies. $X_{r t}^{h}$ are demographics dummies for the number of household members (2,3-4,5+) and dummies for the number of household earners (1, 2+). These are typically used in the literature (e.g. Aguiar and Bils, 2015). Following Comin et al. (2015) we also control for differences in household-specific prices by including region-time dummies, $\delta_{r, t}$. The implicit assumption behind this control is that households within a region face the same prices.

We estimate equation (2) separately for each decade for which the CES data are avail-

Figure 6: Service consumption by average age of household members and income

Notes: Authors' calculations based on the Consumer Expenditure Survey. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.
able. Figure 7 plots the age group dummies, which measure differences in service expenditure shares of the age group relative to age group 25-30. The 95% confidence bands based on standard errors clustered by household are depicted around the point estimates. The figure shows large differences in service expenditures across households of different ages, even conditioning on income and prices. These conditional differences are nearly as large as the unconditional ones reported in Figure 5. As in the raw data, households in their 60s have service expenditure shares 10-12 percentage points higher than households in their 30s, and households in their 80s' service expenditure shares are more than 20 points higher. The age dummies are precisely estimated, and quite stable over time. Appendix Figures A7 and A9 reproduce Figures 5 and 7 using the age of the reference person (i.e. household head) instead of average age in the household, and shows that the results are virtually unchanged. Additionally, Appendix Figures A8 and A10 replicate Figures 5 and 7 adding housing as part of the overall consumption and services.

Figure 7: Age dummies (controlling for income decile)

Notes: Each dot represents the point estimate of the age dummies in Equation (2) for a particular decade in the CES data. The omitted dummy is that of age group 25-30. The bands report the 95% confidence intervals based on standard errors clustered at the household level.

Decomposing consumption differences: Table 2 shows the differences in expenditure shares across young and old households for the main consumption categories. The table reports the difference in expenditure shares for each category for the $25-30 \mathrm{vs}$. the age groups starting at 60-65. Unsurprisingly, the largest disparity arises in health expenditures, where the consumption expenditure share of the 60-65 (80+) age group is 5.6 (15.3) percentage points larger than that of the 25-30 age group. The table shows that the elderly also spend relatively more on Cash Contributions, Domestic Services and Childcare, and Utilities. In contrast, for Vehicle Purchasing and Leasing, the expenditure share of the $60-65(80+)$ age group is $3.8(11.24)$ percentage points smaller than that of the $25-30$ age group.

Table 2: Differences in expenditures by consumption category: $25-30$ vs $60-65,65-70,70-$ 75, 75-80 and 80+

	Age groups				
	$60-65$	$65-70$	$70-75$	$75-80$	$80+$
Health	5.62	7.90	10.17	12.42	15.25
Cash contributions	3.41	4.44	5.59	6.45	9.48
Domestic services and childcare	0.59	0.91	1.28	1.98	5.22
Utilities	1.06	1.23	1.88	2.57	3.41
Personal care services	0.13	0.20	0.30	0.36	0.44
Food at home	-0.89	-0.57	0.03	0.51	0.45
Personal care goods	-0.01	-0.01	-0.01	-0.02	-0.01
Public transport	0.37	0.36	0.25	0.18	-0.41
Tobacco	0.03	-0.17	-0.38	-0.58	-0.77
Shoes and other apparel	-0.37	-0.47	-0.58	-0.79	-0.85
Children's clothing	-0.76	-0.77	-0.88	-0.94	-1.03
Entertainment fees, adm., reading	-0.08	-0.14	-0.32	-0.61	-1.04
Alcoholic beverages	-0.33	-0.46	-0.64	-0.84	-1.04
Furnitures and Fixtures	-0.17	-0.30	-0.62	-0.83	-1.21
Appliances	0.14	-0.20	-0.49	-0.74	-1.36
Men's and women's clothing	-0.32	-0.57	-0.73	-1.13	-1.69
Car maintenance, repairs, insurance	-0.31	-0.55	-0.71	-0.78	-1.84
Food away from home	-0.55	-0.77	-1.17	-1.64	-2.26
Entertainment equipment	-0.20	-0.83	-1.78	-2.23	-2.80
Education	-2.63	-2.86	-2.90	-2.80	-2.99
Gas	-0.98	-1.41	-1.89	-2.48	-3.70
Vehicle purchasing, leasing	-3.75	-4.98	-6.41	-8.04	-11.24
Services	7.61	10.73	14.37	18.12	25.26

Notes: This table reports the differences in expenditure shares across the major consumption categories between age groups starting at 60-65 and households aged 25-30. Source: authors' calculations based on the CES.

Structural change within the service sector We conclude this section by documenting that the rise in service expenditures has been concentrated in categories that are disproportionally consumed by older households. Figure 8 divides service categories into two groups: One for the categories that are disproportionally consumed by the old (Health, Utilities and Domestic Services and Childcare), and one for the remaining categories. The figure shows a dramatic increase in the aggregate expenditure share for Health, Utilities and Domestic Services and Childcare, the combined expenditure share in these categories goes from 21 to over 28 percent over our period. In contrast, there is no change in the ex-
penditure share in the remaining service categories. Figure A17 shows that a similar pattern emerges in the Personal Consumption Expenditure data from the BEA: the increase in service consumption is concentrated among those categories that are disproportionally consumed by the old.

Figure 8: Evolution of expenditure share on selected service categories using CES

Notes: 'Old' refers to the economy wide expenditure share in categories that are disproportionally consumed by the old: Health, Utilities and Personal Services. 'Young' refers to the remaining categories.

Accounting for medical expenses not covered in the CES A potential caveat with the CES data is that it only reports out-of-pocket expenses by private households. These expenses may misrepresent differences in health consumption across households, since the CES data do not include all type of private insurance, Medicaid, and Medicare expenditures.

With this in mind, we repeat our analysis after augmenting the CES data with data from the National Health Expenditure Survey (NHES) and Personal Consumption Expenditures (PCE) from the BEA. In particular, we rescale the out-of-pocket health expenditures on the CES to match the total health expenditures of each age group in the

NHES. We then rescale the resulting expenditures in each consumption category to match aggregate consumption expenditures by category in the National Accounts (PCE BEA) data. Appendix D details this procedure and shows that it does not alter our main findings.Accounting for structural change in the US

This section quantifies the contribution of observed changes in the age distribution to the observed changes in sectoral consumption shares in the US between 1982 and 2016. We conduct this exercise using two alternative methodologies. The first is a shift-share decomposition of the increase in the share of services in total consumption into the part that arises from reallocation of expenditures between age groups vs. changes in expenditures within age groups. The second uses a quantitative model of structural transformation that extends Boppart (2014) to allow for age-specific preferences to compare the contribution of changes in population age to the contribution of the income and price effects that have been the focus of most of the structural transformation literature.

2.3 Within-between decomposition

We start with a decomposition of the observed rise in the share of services in total consumption in the CES between 1982 and 2016. We can write the share of services in aggregate consumption as:

$$
\begin{equation*}
\Omega_{t}^{s}=\frac{\sum_{a} P_{t}^{s, a} c_{t}^{s, a}}{\sum_{a} \sum_{j} p_{t}^{, j a} c_{t}^{j, a}}=\sum_{a} \omega_{t}^{s, a} \times s_{t}^{a} \tag{3}
\end{equation*}
$$

where a indexes the age groups and j indexes the consumption categories. $P_{t}^{j, a} c_{t}^{j, a}$ are total consumption expenditures by age group a in consumption category $j, \omega_{t}^{s, a} \equiv \frac{P_{t}^{s, a} c_{t, a}^{s, a}}{\sum_{j} p_{t}^{j, a} c_{t}^{j, a}}$ is the share of services in total expenditures by age group a, and $s_{t}^{a} \equiv \frac{\sum_{j} P_{t}^{j, a} c_{t}^{j, a}}{\sum_{a} \sum_{j} P_{t}^{j, a} c_{t}^{j, a}}$ is the share of age group a in aggregate expenditures. Letting $\Delta x \equiv x_{1}-x_{0}$ and $\bar{x} \equiv\left[x_{1}+x_{0}\right] / 2$ denote the change and the average of a variable across periods $t=1$ and $t=0$ we can write:

$$
\begin{equation*}
\Delta \Omega^{s}=\underbrace{\sum_{a} \Delta \omega^{s, a} \cdot \bar{s}^{a}}_{\text {Within }}+\underbrace{\sum_{a} \bar{\omega}^{s, a} \cdot \Delta s^{a}}_{\text {Between }} . \tag{4}
\end{equation*}
$$

Equation (4) expresses the change in the service share of expenditures as the sum of two terms. The term labeled 'Within' captures changes in the age-specific expenditure shares,
$\Delta \omega^{s, a}$, while the term labeled 'Between' captures changes in the share of age group a in aggregate expenditures, Δs^{a}.

We take equation (4) to the data by breaking the US population into the 13 age groups as in Section 2.2, measuring age both by the average age of all household members and by the age of the household head. Table 3 reports the terms $\omega_{t}^{s, a}$ and s_{t}^{a} in equation (3) for each age group in 1982 vs. 2016. As already documented in Figure 5, older households allocate a significantly larger fraction of their expenditures towards services than younger ones: both in 1982 and 2016, the share of expenditure in services is more than 50% higher for households over 80 than for those aged 25-30. In addition, the table shows a large increase in the share of expenditures that is accounted for by older households: households 65 and older accounted for 10.4 percent of total expenditures in 1982, and 19.8 percent in 2016, a 90% increase. The share of expenditures that goes to households 80 and older nearly tripled, going from 1.2 to 3.4 percent. The counterpart of this increase is the decline in the share of expenditures that goes to households 30 and younger, from 47.3 to 31.6 percent.

Table 3: Population aging and the services share

	Pop 1982	s_{1982}^{a}	$\omega_{1982}^{s, a}$	Pop 2016	s_{2016}^{a}	$\omega_{2016}^{s, a}$
$0-25$	31.8	31.2	38.8	20.4	19.8	47.2
$25-30$	13.5	16.1	39.9	11.4	11.8	47.6
$30-35$	9.4	11.2	42.1	9.4	10.8	50.3
$35-40$	6.2	7.6	43.0	7.1	7.9	49.5
$40-45$	4.6	5.4	45.4	5.9	6.5	53.4
$45-50$	3.6	4.0	45.6	5.2	5.5	51.4
$50-55$	3.8	4.0	45.7	6.1	6.1	51.4
$55-60$	5.1	4.9	47.4	6.7	6.9	51.9
$60-65$	5.7	5.2	50.6	7.5	7.8	58.1
$65-70$	5.9	4.5	53.0	6.8	6.3	56.7
$70-75$	4.3	2.9	58.7	5.1	4.6	57.4
$75-80$	3.3	1.8	59.5	3.4	2.8	60.8
$80+$	2.9	1.2	67.5	5.0	3.4	69.6

Notes: Authors' calculations based on the CES. 'Pop' reports the share of the population in each age group. s_{t}^{a} and ω_{t}^{a} are defined as in Equation (4).

Table 4 reports the results of the decomposition in equation (4). The share of services in total expenditures increased by 8.5 percentage points during the 1982-2016 period. The table shows that 1.85 percentage points, about a fifth of the increase, are attributed to between age group changes in expenditures. The remainder is attributed to changes in
expenditure shares within groups. The table shows that the numbers are similar if we instead measure household age by the age of the household head. Appendix Table A6 shows that the results are somewhat smaller though still economically significant if we count housing as part of service expenditures.

Table 4: Within-between decomposition

	Average		Reference	
	Value	$\%$	Value	$\%$
Within	0.0663	78.2	0.0675	79.7
Between	0.0185	21.8	0.0172	20.3
Total	0.0848	100	0.0848	100

Notes: The table reports the results of the decomposition in equation (4). 'Average' uses the average age across all household member as the age of the household. 'Reference' uses the age of the head in the household.

2.4 A quantitative model of population aging and structural change

This section develops a model to quantify the contribution of changes in population age, changes in income, and changes in relative prices to the structural transformation process in the US. We study an economy populated by N_{t} households indexed by h. Households are heterogeneous in their preferences and their expenditure levels, e_{t}^{h}. Households consume goods (g) and services (s). The indirect utility of household h takes the form:

$$
\begin{equation*}
\mathcal{V}^{h}\left(P_{t}^{s}, P_{t}^{g}, e_{t}^{h}\right)=\frac{1}{\epsilon}\left[\frac{e_{t}^{h}}{P_{t}^{s}}\right]^{\epsilon}-\frac{v_{t}^{h}}{\gamma}\left[\frac{P_{t}^{g}}{P_{t}^{s}}\right]^{\gamma}-\frac{1}{\epsilon}+\frac{v_{t}^{h}}{\gamma}, \tag{5}
\end{equation*}
$$

where P_{t}^{s} and P_{t}^{g} are the prices of goods and services, and the parameters satisfy $0 \leq \epsilon \leq$ $\gamma \leq 1$ and $v_{t}^{h} \geq 0$. This utility function belongs to a subclass of "Price Independent Generalized Linearity" (PIGL) preferences defined by Muellbauer $(1975,1976)$ and recently introduced in the structural change literature by Boppart (2014). Using Roy's identity, we can show that expenditure shares are given by:

$$
\begin{equation*}
\omega_{t}^{g, h} \equiv \frac{P_{t}^{g} c_{t}^{g, h}}{e_{t}^{h}}=v_{t}^{h}\left[\frac{P_{t}^{s}}{e_{t}^{h}}\right]^{\epsilon}\left[\frac{P_{t}^{g}}{P_{t}^{s}}\right]^{\gamma} \tag{6}
\end{equation*}
$$

and $\omega_{t}^{s, h} \equiv \frac{P_{t}^{s} t_{t}^{s, h}}{e_{t}^{h}}=1-\omega_{t}^{g, h}$, where $c_{t}^{g, h}$ and $c_{t}^{s, h}$ denote consumption of goods and services by household h. The aggregate expenditure shares are:

$$
\Omega_{t}^{g} \equiv \frac{\sum_{h} P_{t}^{g} c_{t}^{g, h}}{\sum_{h} e_{t}^{h}}=\left[\frac{P_{t}^{s}}{e_{t}}\right]^{\epsilon}\left[\frac{P_{t}^{g}}{P_{t}^{s}}\right]^{\gamma} \frac{1}{N_{t}} \sum_{h} v_{t}^{h}\left[\frac{e_{t}^{h}}{e_{t}}\right]^{1-\epsilon}
$$

where $e_{t} \equiv \frac{1}{N_{t}} \sum_{h} e_{t}^{h}$ denotes average expenditures per household. Aggregate shares depend on real per capita expenditures in units of services, $\frac{e_{t}}{P_{t}^{s}}$, the relative price of goods vs. services, $\frac{p_{t}^{g}}{P_{t}^{s}}$, the extent of income inequality, $\frac{e_{t}^{h}}{e_{t}}$, and the taste shifters, v_{t}^{h}.

In what follows we assume that households can be grouped according to their age, and denote the number of households of age a by N_{t}^{a}, with $\sum_{a} N_{t}^{a}=N_{t}$. We further assume that the taste shifters take the form $v_{t}^{h}=v_{t} \mu_{t}^{a} \mu_{t}^{h}$, with $\frac{1}{N_{t}} \sum_{h} \mu_{t}^{h}=1$. This implies that the household specific-taste shifter has an aggregate component v_{t}, an age-specific component μ_{t}^{a}, and an idiosyncratic component μ_{t}^{h}. The aggregate expenditure share can then be written as:

$$
\begin{equation*}
\Omega_{t}^{g}=\left[\frac{P_{t}^{s}}{e_{t}}\right]^{\epsilon}\left[\frac{P_{t}^{g}}{P_{t}^{s}}\right]^{\gamma} \bar{\mu}_{t} \phi_{t} v_{t} . \tag{7}
\end{equation*}
$$

Here, $\bar{\mu}_{t} \equiv \sum_{a} s_{t}^{a} \mu^{a}$ is the weighted average of the age-specific taste shifters, with weights given by expenditure shares $s_{t}^{a}=\frac{e_{t}^{a} N_{t}^{a}}{e_{t} N_{t}}$. The composite $\phi_{t} \equiv \frac{1}{N_{t}} \sum_{h}^{N_{t}} \frac{\mu^{a}}{\overline{\mu_{t}}}\left[\frac{e_{t}^{h}}{e_{t}}\right]^{1-\epsilon}$ is a measure of the inequality in the economy, weighted by household preferences. ${ }^{3}$

Parameterization We are interested in decomposing changes in expenditure shares into the components due to changes in income per capita $\frac{e_{t}}{P_{t}^{s}}$, relative prices $\frac{P_{t}^{g}}{P_{t}^{s}}$, and changes in the share of expenditures that correspond to the different age groups in the population, $s_{t}^{a} \equiv \frac{e_{t}^{a} N_{t}^{a}}{e_{t} N_{t}}$. Note that s_{t}^{a} affects expenditure shares directly through $\bar{\mu}_{t}$ and indirectly through income inequality ϕ_{t}. To conduct this exercise we need to parameterize the income and substitution effects in the indirect utility function (5), governed by the parameters ϵ and γ, as well as the age effects captured by $\bar{\mu}_{t}$.

We follow Boppart (2014) and proceed in two steps. In the first step, we use the crosssection of households from the CES and estimate equation (6) in logs. The estimating

[^2]equation is:
\[

$$
\begin{equation*}
\ln \left[\omega_{t}^{g, h}\right]=\beta_{0}+\beta_{1} \ln \left[e_{t}^{h}\right]+D^{a}+\delta_{r, t}+\varepsilon_{t}^{h} \tag{8}
\end{equation*}
$$

\]

where $\beta_{0}+\delta_{r, t}=\ln \left[P_{t}^{s}\right]^{\epsilon-\gamma}\left[P_{t}^{g}\right]^{\gamma}, \beta_{1}=-\epsilon$, and $\varepsilon_{t}^{h}=\ln \mu_{t}^{h}{ }^{4} D_{a}=\ln \mu^{a}$ is an age dummy that captures the taste shifter of the age group relative to an omitted age group. Without loss of generality we normalize $\mu^{a}=1$ for age group [25,30). Using these estimates for ϵ and μ^{a}, we can construct the time series of $\bar{\mu}_{t}$ and ϕ_{t}.

We can then obtain the price elasticity γ from a regression of equation (7) in logs:

$$
\begin{equation*}
\ln \left[\Omega_{t}^{g}\right]=b_{1} \ln P_{t}^{g}+b_{2} \ln P_{t}^{s}+b_{3} X_{t}+\ln v_{t} \tag{9}
\end{equation*}
$$

where $X_{t} \equiv \ln \left(e_{t}^{-\epsilon} \bar{\mu}_{t} \phi_{t}\right), b_{1}=\gamma$, and the other coefficients satisfy the restrictions $b_{3}=1$, and $b_{2}=\epsilon-b_{1}$.

Columns 1 and 2 in Table 5 report the results of estimating (8) with OLS, while Columns 3 and 4 report the results of IV estimation with expenditure instrumented by income, as is customary in the literature (see, e.g. Boppart, 2014). Table 5 shows an income elasticity of $\epsilon=0.12$, which is somewhat smaller than the $\epsilon=0.2$ found by Boppart (2014). ${ }^{5}$ Appendix Table A7 displays the estimates for the age dummies, and shows that our results are robust to using the age of the reference person. Appendix Table A8 shows that the results for ϵ are only slightly different even when considering housing as part of service consumption. The age dummies are relatively large and statistically different from zero, and decrease monotonically with age, indicating that older households spend relatively less on goods after controlling for real income.

Table 6 reports the estimation results for (9). Our estimate for the parameter that governs the substitution elasticity is $0.15 .{ }^{6}$ Both γ and ϵ are precisely estimated and significantly different from zero, and satisfy the restriction $\gamma>\epsilon>0$.

[^3]Table 5: Estimates of equation (8)

	(1)	(2)	(3)	(4)
	$\log \omega_{t}^{g, n}$	$\log \omega_{t}^{g, n}$	$\log \omega_{t}^{g, n}$	$\log \omega_{t}^{g, n}$
$\log e_{t}^{n}$	$-0.0476^{* * *}$	$-0.0478^{* * *}$	$-0.116^{* * *}$	$-0.117^{* * *}$
	(0.000642)	(0.000643)	(0.00178)	(0.00179)
Type	OLS	OLS	IV	IV
Time FE	Yes	No	Yes	No
Region-Time FE	No	Yes	No	Yes
Observations	1324874	1319092	1226096	1220472
R^{2}	0.122	0.125	0.099	0.100

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table 6: Estimates of equation (9)

	(1)	(2)
	Ω_{t}^{g}	Ω_{t}^{g}
$b_{1}=\gamma$	$0.145^{* * *}$	$0.154^{* * *}$
	(0.00999)	(0.0100)
Age variable	Average	Reference
Observations	35	35
R^{2}	0.860	0.874
Standard errors in parentheses		
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$		

Quantitative results Taking logs in equation (7) and rewriting everything in terms of share of consumption on services, we obtain: ${ }^{7}$

$$
\begin{equation*}
\hat{\Omega}_{t}^{s} \approx-\frac{\Omega_{82}^{g}}{\Omega_{82}^{s}}\{\underbrace{\epsilon\left[\hat{P}_{t}^{s}-\hat{e}_{t}\right]}_{\text {Income }}+\underbrace{\gamma\left[\hat{P}_{t}^{g}-\hat{P}_{t}^{s}\right]}_{\text {Substitution }}+\underbrace{\hat{\bar{\mu}}_{t}}_{\text {Aging }}+\underbrace{\hat{\phi}_{t}}_{\text {Inequality }}+\underbrace{\hat{v}_{t}}_{\text {Residual }}\} \tag{10}
\end{equation*}
$$

where we used the notation $\hat{x}_{t} \equiv \ln x_{t}-\ln x_{82}$ to denote the cumulative \log change of a variable between time t and the first year in our sample. Equation (10) shows that logchanges in the aggregate expenditure share of goods are additively separable into the

[^4]effects of changes in 'Income', 'Substitution', 'Aging', 'Inequality', and a residual. This decomposition is plotted in Figure 9. The figure shows that the expenditure share in services grew by about $20 \log$ points between 1982 and 2016 in the CES data. About two thirds of this rise was due to the rise in the relative price of services (labeled 'Substitution'). Also important was the increase in population age, captured by the decline in $\hat{\bar{\mu}}_{t}$ (labeled 'Aging'), which grew by nearly 5 log-points, about a fifth of the total change. The residual accounts for roughly 5 log points, more than cancelling out the changes due to real income and in inequality $\hat{\phi}_{t}$ which did not contribute to the rise in the expenditure share of services during this period. Appendix Figure A11 shows that the results are unchanged when using the age of the reference person as the household age variable. Appendix Figure A12 shows that the absolute contribution of aging stays unchanged when considering housing as part of service consumption.

Figure 9: Accounting for structural change in the US

Notes: This figure displays the decomposition (10) for the US from 1982 to 2016

Projected changes in expenditure shares: To further illustrate the potential strength of aging as a driver of structural transformation, we compute the contribution of the
projected changes in population structure to structural transformation in the future. To do this, we use the US population projections to the year 2050 from the World Bank's "Population estimates and projection" database. Because our estimates of the age taste shifters μ^{a} are at the household level, while the population projections are for population shares by age group, we fit the following regression to map population shares (PopSh ${ }_{t}^{a}$) into household age shares:

$$
\frac{N_{t}^{a}}{N_{t}}=\beta_{1} \operatorname{PopSh}_{t}^{a}+\beta_{2}\left(\operatorname{PopSh}_{t}^{a}\right)^{2}+\varepsilon_{t} \quad \text { for } t=1982, \ldots, 2016
$$

Then, for future years we construct \widehat{s}_{t}^{a} putting together: $\frac{\widehat{N_{t}^{a}}}{N_{t}}=\widehat{\beta}_{1} \operatorname{PopSh}_{t}^{a}+\widehat{\beta}_{2}\left(\operatorname{PopSh}_{t}^{a}\right)^{2}$ for $t=2017, \ldots, 2050$ and $\frac{\bar{e}_{2016}^{a}}{\bar{e}_{2016}}$ computed using data in 2016. Thus, $\hat{\bar{\mu}}_{t}^{\text {Predicted }}=\sum_{a} \widehat{s}_{t}^{a} \mu^{a}$ for $t=1982, \ldots, 2016$.

Figure 10: Projections of $\hat{\bar{\mu}}_{t}$ for the US

Notes: This figure displays the estimated $\hat{\bar{\mu}}_{t}$ from 1982 to 2016, and the projected $\hat{\bar{\mu}}_{t}$ for 2017-2050 for the US.

Figure 10 reports the results. It turns out that the contribution of aging to structural change over the past 35 years is relatively modest compared to its projected future con-
tribution. The service expenditure share will increase by a further $10 \log$ points under the current population aging projections to 2050, even with price of services and real income held constant at today's values.

3 Conclusion

This paper proposed and quantified a novel mechanism behind the structural transformation process: older individuals devote a larger share of their expenditures to services, so the relative size of the service sector grows as the population ages. We show that, across a large sample of countries, the rise in the relative size of the service sector has coincided with an increase in population age. We document large differences in sectoral expenditures shares across households of different ages in the US CES data, with older households spending relatively more on services. We then use a shift-share decomposition and a quantitative model to show that changes in the US population age accounted for about a fifth of the increase in the consumption share of service expenditures observed between 1982 and 2016. In our quantitative model, population aging plays a much larger role than changes in real income in accounting for the structural change observed in the US during this period. Projections for the changes in the service expenditure share due to aging in both the US and a sample of OECD countries suggest that the future contribution of aging to structural transformation is if anything larger than what it has been up to now.

References

Acemoglu, Daron and Veronica Guerrieri, "Capital Deepening and Nonbalanced Economic Growth," Journal of Political Economy, 2008, 116 (3), 467-498.

Aguiar, Mark and Erik Hurst, "Deconstructing Life Cycle Expenditure," Journal of Political Economy, 2013, 121 (3), 437-492.

- and Mark Bils, "Has Consumption Inequality Mirrored Income Inequality," American Economic Review, 2015, 105, 2725-2756.

Baumol, William J, "Macroeconomics of Unbalanced Growth: The Anatomy of Urban Crisis," American Economc Review, 1967, 57 (3), 415-426.

Boppart, Timo, "Structural Change and the Kaldor Facts in a Growth Model With Relative Price Effects and Non-Gorman Preferences," Econometrica, November 2014, 82, 2167-2196.

Buera, Francisco J. and Joseph P. Kaboski, "The Rise of the Service Economy," American Economic Review, October 2012, 102 (6), 2540-2569.

Comin, Diego A., Danial Lashkari, and Martí Mestieri, "Structural Change with Longrun Income and Price Effects," NBER Working Papers 21595, National Bureau of Economic Research, Inc September 2015.

Cravino, Javier and Sebastian Sotelo, "Trade-Induced Structural Change and the Skill Premium," June 2018. forthcoming, American Economic Journal: Macroeconomics.

Herrendorf, Berthold, Richard Rogerson, and Ákos Valentinyi, "Two Perspectives on Preferences and Structural Transformation," American Economic Review, December 2013, 103 (7), 2752-89.
_ , - , and Akos Valentinyi, "Growth and Structural Transformation," in "Handbook of Economic Growth," Vol. 2 of Handbook of Economic Growth, Elsevier, 2014, chapter 6, pp. 855-941.

Hobijn, Bart and David Lagakos, "Inflation Inequality In The United States," Review of Income and Wealth, December 2005, 51 (4), 581-606.

Kongsamut, Piyabha, Sergio Rebelo, and Danyang Xie, "Beyond Balanced Growth," The Review of Economic Studies, 2001, 68 (4), 869-882.

Kuznets, Simon, "Quantitative Aspects of the Economic Growth of Nations: II. Industrial Distribution of National Product and Labor Force," Economic Development and Cultural Change, 1957, 5 (S4), 1-111.

Matsuyama, Kiminori, "Structural Change in an Interdependent World: A Global View of Manufacturing Decline," Journal of the European Economic Association, 04-05 2009, 7 (2-3), 478-486.

Muellbauer, John, "Aggregation, Income Distribution and Consumer Demand," Review of Economic Studies, 1975, 42 (4), 525-543.
_ , "Community Preferences and the Representative Consumer," Econometrica, September 1976, 44 (5), 979-999.

Ngai, L. Rachel and Christopher A. Pissarides, "Structural Change in a Multisector Model of Growth," American Economic Review, March 2007, 97 (1), 429-443.

Porzio, Tommaso and Gabriella Santangelo, "Does Schooling Cause Structural Change?," Working Paper 2019.

Swiecki, Tomasz, "Determinants of Structural Change," Review of Economic Dynamics, March 2017, 24, 95-131.

Uy, Timothy, Kei-Mu Yi, and Jing Zhang, "Structural change in an open economy," Journal of Monetary Economics, 2013, 60 (6), 667 - 682.

ONLINE APPENDIX

(NOT FOR PUBLICATION)

A Robustness of results in Section 2.1

Figure A1: Sectoral shares of Employment and Value Added

Hours Worked

Agriculture

Manufacturing

Services

Value Added

Agriculture

Austria	- Belgium	Denmark	\times Spain	Finland
France	- Germany	- Italy	- Netherlands	\times Portugal
\triangle Sweden	+ United Kingdom	- Australia	- Canada	- Greece
\times Ireland	Japan	Korea	Luxemburg	USA

Notes: Each dot represents a country-year. The x-axis reports the average age in the population (source WDI). The y-axis reports the sectoral share in hours worked (left panel) and the sectoral shares in value added (right panel) using data from EU KLEMS. 32

Figure A2: Residualized sectoral shares of employment and value added

Notes: Each dot represents a country-year. The x-axis reports the residual of a regression of the share of the population that is 65 on GDP per capita and country fixed-effects. The y-axis reports the residual of a regression of the sectoral share in hours worked (left panel) and the sectoral shares in value added (right panel) on GDP per capita and country fixed-effects. Data sources are the same as in Figure 1.

Figure A3: Sectoral consumption shares

Notes: Each dot represents a country-year. The x-axis reports the average age in the population (source WDI). The y-axis reports the sectoral share in consumption using data from the OECD statistics.

Table A1: Population aging and the services share, EU KLEMS

	Agriculture (1)	Manufacturing (2)	Services (3)
Employment Share Log GDP per capita	$\begin{gathered} -0.201 \\ (1.936) \end{gathered}$	$\begin{aligned} & 7.617^{*} \\ & (3.654) \end{aligned}$	$\begin{gathered} -7.416^{* *} \\ (2.755) \end{gathered}$
$\left(\right.$ Log GDP per capita) ${ }^{2}$	$\begin{gathered} -0.0530 \\ (0.209) \end{gathered}$	$\begin{aligned} & -0.754^{*} \\ & (0.389) \end{aligned}$	$\begin{aligned} & 0.807^{* *} \\ & (0.295) \end{aligned}$
$\left(\right.$ Log GDP per capita) ${ }^{3}$	$\begin{gathered} 0.00400 \\ (0.00746) \end{gathered}$	$\begin{aligned} & 0.0245^{*} \\ & (0.0136) \end{aligned}$	$\begin{gathered} -0.0285^{* *} \\ (0.0104) \end{gathered}$
Share of pop 65+	$\begin{aligned} & -0.606^{*} \\ & (0.289) \end{aligned}$	$\begin{aligned} & -0.604 \\ & (0.474) \end{aligned}$	$\begin{aligned} & 1.210^{* *} \\ & (0.523) \end{aligned}$
R^{2}	0.952	0.701	0.929
Value added Share Log GDP per capita	$\begin{aligned} & 0.0730 \\ & (1.034) \end{aligned}$	$\begin{aligned} & -0.191 \\ & (3.748) \end{aligned}$	$\begin{gathered} 0.118 \\ (2.955) \end{gathered}$
$\left(\right.$ Log GDP per capita) ${ }^{2}$	$\begin{gathered} -0.0512 \\ (0.111) \end{gathered}$	$\begin{gathered} 0.103 \\ (0.399) \end{gathered}$	$\begin{aligned} & -0.0522 \\ & (0.315) \end{aligned}$
$\left(\right.$ Log GDP per capita) ${ }^{3}$	$\begin{gathered} 0.00299 \\ (0.00391) \end{gathered}$	$\begin{aligned} & -0.00661 \\ & (0.0140) \end{aligned}$	$\begin{aligned} & 0.00362 \\ & (0.0111) \end{aligned}$
Share of pop 65+	$\begin{gathered} -0.0286 \\ (0.124) \end{gathered}$	$\begin{gathered} -1.315^{*} * \\ (0.481) \end{gathered}$	$\begin{gathered} 1.344^{* * *} \\ (0.428) \end{gathered}$
Observations	707	707	707
R^{2}	0.953	0.761	0.874

Standard errors in parentheses clustered at the country level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table A2: Population aging and the sectoral consumption share, OECD

	Agriculture		Manufacturing		Services	
	(1)	(2)	(3)	(4)	(5)	(6)
Consumption share						
Share of pop 65+	$-1.702^{* *}$	-0.305	$-0.793^{* *}$	-0.639^{*}	$2.496^{* * *}$	$0.943^{* * *}$
	(0.560)	(0.237)	(0.293)	(0.318)	(0.614)	(0.243)
Log GDP per capita		$-0.130^{* * *}$		-0.0144		$0.144^{* * *}$
		(0.0129)		(0.0268)		(0.0167)
Observations	377	377	377	377	377	377
R^{2}	0.767	0.951	0.803	0.806	0.789	0.942
Standard errors in parentheses						
${ }^{*} p<0.10,^{* *} p<0.05,^{* * *} p<0.01$						

B Evidence from the WDI and the UN Statistics Division

This section complements the evidence from Section 2.1 using employment data from the WDI and value-added data from the UN. Relative to the data presented in the main text, these sources cover a much broader sample of both developed and developing countries. On the other hand, unlike the the EU-KLEMS data, the WDI only reports number of employed persons as opposed to number of hours worked, and the value-added data from the UN are obtained from country-specific sources that are not necessarily harmonized. The data presents a balanced panel of countries that are covered for the 1970-2007 period. We follow Herrendorf et al. (2014) and restrict our sample to countries with average population above 1 million, exclude former communist countries, and exclude countries where the average ratio of oil rents to GDP is above 20 percent. This leaves a sample of 99 countries.

We replicate the fact reported in Section 2.1 using these alternative data. Table A3 and Figure A4 summarize the results from a regression analogous to Equation (1) that is estimated on the WDI data. They show that, after controlling for income, there is a clear negative relation between population age and the employment shares in Agriculture and Manufacturing, and a strong positive relation between population age and the share of employment in the Service sector. These relations are observed for each of our population age variables.

Figure A5 and Table A4 corroborate that the same patterns described in Section 2.1 are also present in the value-added data from the UN. After controlling for income, there is a clear negative relation between population age and the employment shares in Agriculture and Manufacturing, and a strong positive relation between population age and the share of employment in the service sector.

Figure A4: Residualized sectoral employment shares: WDI data

Notes: Each dot represents a country-year. The x-axis reports the residual of a regression of the share of the population that is 65 (left panel) or the average age of the population (right panel) on GDP per capita and country fixed-effects. The y-axis reports the residual of a regression of the sectoral share in employment on GDP per capita and country fixed-effects.

Table A3: Population aging and the services share in employment: WDI data

	Agriculture		Manufacturing		Services	
	(1)	(2)	(3)	(4)	(5)	(6)
Employment share						
Average age	$-0.0136^{* * *}$	$-0.00736^{* *}$	$-0.0103^{* * *}$	$-0.0126^{* * *}$	$0.0249^{* * *}$	$0.0196^{* * *}$
	(0.00232)	(0.00349)	(0.00239)	(0.00331)	(0.00240)	(0.00372)
Log GDP per capita			$-0.0639^{* * *}$			
		(0.0216)		0.0248		0.0448^{*}
		$20.0223)$		(0.0242)		
Observations	206	2029	2214	2037	2214	2037
R^{2}	0.921	0.918	0.805	0.826	0.904	0.896

Standard errors in parentheses clustered at the country level

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Figure A5: Residualized sectoral value-added shares: UN data

Share of population 65+yo

Average age

Notes: Each dot represents a country-year. The x-axis reports the residual of a regression of the share of the population that is 65 (left panel) or the average age of the population (right panel) on GDP per capita and country fixed-effects. The y-axis reports the residual of a regression of the sectoral share in value added (second panel) on GDP per capita and country fixed-effects.

Table A4: Population aging and the services share in value-added: UN data

	Agriculture		Manufacturing		Services	
	(1)	(2)	(3)	(4)	(5)	(6)
Value added share						
Average age	$-0.0117^{* * *}$	-0.00289	$-0.00648^{* * *}$	$-0.0169^{* * *}$	$0.0180^{* * *}$	$0.0197^{* * *}$
	(0.00136)	(0.00190)	(0.00166)	(0.00238)	(0.00163)	(0.00277)
Log GDP per capita						
		$-0.0916^{* * *}$		$0.109^{* * *}$		-0.0185
		(0.0145)		(0.0162)		(0.0200)
Observations	6509	6156	6547	6194	6547	6194
R^{2}	0.880	0.903	0.778	0.819	0.829	0.824

Standard errors in parentheses clustered at the country level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

C Additional tables and figures

Table A5: Expenditure shares on goods and services

	$1982-1991$	$1992-2001$	$2002-2016$
Goods	63.1	62.1	57.3
Vehicle purchasing, leasing	17.1	19.0	16.1
Food at home	15.9	15.7	15.2
Gas	6.0	4.7	6.8
Appliances	5.9	6.4	5.8
Entertainment equipment	4.9	5.3	5.3
Men's and women's clothing	4.1	3.3	2.0
Furnitures and Fixtures	2.7	2.2	1.8
Shoes and other apparel	2.3	1.9	1.3
Alcoholic beverages	1.7	1.3	1.2
Tobacco	1.4	1.2	1.0
Children's clothing	1.1	1.1	0.7
Personal care goods	0.0	0.0	0.0
Services	36.9	37.9	42.7
Health	6.5	7.6	9.7
Utilities	7.3	6.9	7.8
Food away from home	6.5	6.0	6.9
Cash contributions	3.3	3.6	4.5
Domestic services and childcare	2.3	2.6	3.3
Education	2.0	2.4	3.3
Entertainment fees, adm., reading	3.0	2.9	2.4
Car maintenance, repairs, finance	2.9	2.7	2.2
Public transport	1.7	1.8	1.7
Personal care services	1.3	1.3	1.0

Notes: Authors' calculations based on the Consumer Expenditure Survey. This table reports the expenditure shares on broad categories of goods and services, in the three decades separately. Housing is excluded from expenditures.

Figure A6: Service consumption by average age of household members and income decile, selected deciles

Notes: Authors calculations based on the Consumer Expenditure Survey. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.

Figure A7: Service consumption by age of the reference person

Notes: Authors calculations based on the Consumer Expenditure Survey. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.

Figure A8: Service consumption with housing by average age of household members

Notes: Authors calculations based on the Consumer Expenditure Survey. Housing is included in expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.

Figure A9: Age dummies (controlling for income decile), by age of the reference person

Notes: Each dot represents the point estimate of the age dummies in Equation (2) for a particular decade in the CES data. The omitted dummy is that of age group 25-30. The bands report the 95% confidence intervals based on standard errors clustered at the household level.

Figure A10: Age dummies (controlling for income decile)

Notes: Each dot represents the point estimate of the age dummies in modified Equation (2)for a particular decade in the CES data. The modified equation considers housing as a part of service consumption. The omitted dummy is that of age group 25-30. The bands report the 95% confidence intervals based on standard errors clustered at the household level.

Table A6: Within-between decomposition: including housing

	Average age		Reference age	
	Value	$\%$	Value	$\%$
Within	.0893	87.5	.0914	89.6
Between	.0128	12.5	.0106	10.4
Total	.1020	100	.1020	100

Notes: The table reports the results from the decomposition in equation (4) taking housing expenditures into account. 'Average-age' uses the average age across all household member as the age of the household. 'Reference age' uses the age of the reference person in the household.

Table A7: Estimates of equation (8) for different age measures

	$\begin{gathered} (1) \\ \log \omega_{t}^{g, n} \\ \hline \end{gathered}$	$\begin{gathered} (2) \\ \log \omega_{t}^{g, n} \\ \hline \end{gathered}$	$\begin{gathered} (3) \\ \log \omega_{t}^{8, n} \\ \hline \end{gathered}$	$\begin{gathered} (4) \\ \log \omega_{t}^{g, n} \\ \hline \end{gathered}$
$\log e_{t}^{n}$	$\begin{aligned} & -0.121^{* * *} \\ & (0.00160) \end{aligned}$	$\begin{aligned} & -0.122^{* * *} \\ & (0.00161) \end{aligned}$	$\begin{aligned} & -0.121^{* * *} \\ & (0.00170) \end{aligned}$	$\begin{aligned} & -0.122^{* * *} \\ & (0.00171) \end{aligned}$
$D^{[0,25)}$	$\begin{gathered} -0.00574^{* * *} \\ (0.00182) \end{gathered}$	$\begin{gathered} -0.00540 * * * \\ (0.00182) \end{gathered}$	$\begin{gathered} -0.0723^{* * *} \\ (0.00296) \end{gathered}$	$\begin{gathered} -0.0717^{* * *} \\ (0.00296) \end{gathered}$
$D^{[30,35)}$	$\begin{gathered} -0.00462^{* *} \\ (0.00220) \end{gathered}$	$\begin{gathered} -0.00510^{* *} \\ (0.00220) \end{gathered}$	$\begin{aligned} & -0.00392^{*} \\ & (0.00236) \end{aligned}$	$\begin{gathered} -0.00464^{* *} \\ (0.00236) \end{gathered}$
$D^{[35,40)}$	$\begin{gathered} -0.0153^{* * *} \\ (0.00246) \end{gathered}$	$\begin{gathered} -0.0160^{* * *} \\ (0.00246) \end{gathered}$	$\begin{gathered} -0.0100^{* * *} \\ (0.00242) \end{gathered}$	$\begin{gathered} -0.0107^{* * *} \\ (0.00242) \end{gathered}$
$D^{[40,45)}$	$\begin{gathered} -0.0339^{* * *} \\ (0.00273) \end{gathered}$	$\begin{gathered} -0.0346^{* * *} \\ (0.00273) \end{gathered}$	$\begin{gathered} -0.0130^{* * *} \\ (0.00248) \end{gathered}$	$\begin{gathered} -0.0138^{* * *} \\ (0.00248) \end{gathered}$
$D^{[45,50)}$	$\begin{gathered} -0.0460^{* * *} \\ (0.00282) \end{gathered}$	$\begin{gathered} -0.0471^{* * *} \\ (0.00283) \end{gathered}$	$\begin{gathered} -0.0242^{* * *} \\ (0.00254) \end{gathered}$	$\begin{gathered} -0.0250^{* * *} \\ (0.00254) \end{gathered}$
$D^{[50,55)}$	$\begin{gathered} -0.0851^{* * *} \\ (0.00290) \end{gathered}$	$\begin{gathered} -0.0849^{* * *} \\ (0.00291) \end{gathered}$	$\begin{gathered} -0.0532^{* * *} \\ (0.00264) \end{gathered}$	$\begin{gathered} -0.0534^{* * *} \\ (0.00264) \end{gathered}$
$D^{[55,60)}$	$\begin{aligned} & -0.112^{* * *} \\ & (0.00287) \end{aligned}$	$\begin{aligned} & -0.112^{* * *} \\ & (0.00287) \end{aligned}$	$\begin{gathered} -0.0823^{* *} \\ (0.00277) \end{gathered}$	$\begin{gathered} -0.0830^{* * *} \\ (0.00277) \end{gathered}$
$D^{[60,65)}$	$\begin{aligned} & -0.171^{* * *} \\ & (0.00303) \end{aligned}$	$\begin{aligned} & -0.172^{* * *} \\ & (0.00303) \end{aligned}$	$\begin{aligned} & -0.139^{* * *} \\ & (0.00299) \end{aligned}$	$\begin{aligned} & -0.139^{* * *} \\ & (0.00299) \end{aligned}$
$D^{[65,70)}$	$\begin{aligned} & -0.254^{* * *} \\ & (0.00320) \end{aligned}$	$\begin{aligned} & -0.254^{* * *} \\ & (0.00320) \end{aligned}$	$\begin{aligned} & -0.223^{* * *} \\ & (0.00307) \end{aligned}$	$\begin{aligned} & -0.223^{* * *} \\ & (0.00307) \end{aligned}$
$D^{[70,75)}$	$\begin{aligned} & -0.334^{* * *} \\ & (0.00362) \end{aligned}$	$\begin{aligned} & -0.335^{* * *} \\ & (0.00362) \end{aligned}$	$\begin{aligned} & -0.304^{* * *} \\ & (0.00357) \end{aligned}$	$\begin{aligned} & -0.305^{* * *} \\ & (0.00357) \end{aligned}$
$D^{[75,80)}$	$\begin{aligned} & -0.420^{* * *} \\ & (0.00434) \end{aligned}$	$\begin{aligned} & -0.421^{* * *} \\ & (0.00433) \end{aligned}$	$\begin{aligned} & -0.392^{* * *} \\ & (0.00412) \end{aligned}$	$\begin{aligned} & -0.393^{* * *} \\ & (0.00412) \end{aligned}$
$D^{[80, \infty)}$	$\begin{aligned} & -0.569^{* * *} \\ & (0.00502) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.568^{* * *} \\ & (0.00502) \\ & \hline \end{aligned}$	$\begin{array}{r} -0.531^{* * *} \\ (0.00463) \\ \hline \end{array}$	$\begin{aligned} & -0.532^{* * *} \\ & (0.00463) \\ & \hline \end{aligned}$
Age variable	Average	Average	Reference	Reference
Time FE	Yes	No	Yes	No
Region-Time FE	No	Yes	No	Yes
Observations	1,226,631	1,221,006	1,226,631	1,221,006
R^{2}	0.122	0.124	0.109	0.111

Standard errors in parentheses clustered at the household level
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table A8: Estimates of equation (8) with housing

	$\begin{gathered} (1) \\ \log \tilde{\omega}_{t}^{g, n} \end{gathered}$	$\begin{gathered} (2) \\ \log \tilde{\omega}_{t}^{g, n} \end{gathered}$	$\begin{gathered} (3) \\ \log \tilde{\omega}_{t}^{g, n} \end{gathered}$	$\begin{gathered} (4) \\ \log \tilde{\omega}_{+}^{g, n} \end{gathered}$
$\log \tilde{e}_{t}^{n}$	$\begin{gathered} -0.0958^{* * *} \\ (0.00202) \end{gathered}$	$\begin{gathered} -0.0919^{* * *} \\ (0.00203) \end{gathered}$	$\begin{gathered} -0.0924^{* * *} \\ (0.00220) \end{gathered}$	$\begin{aligned} & -0.0876^{* * *} \\ & (0.00221) \end{aligned}$
$D^{[0,25)}$	$\begin{aligned} & 0.0146^{* * *} \\ & (0.00232) \end{aligned}$	$\begin{aligned} & 0.0148^{* * *} \\ & (0.00231) \end{aligned}$	$\begin{gathered} -0.0197^{* * *} \\ (0.00364) \end{gathered}$	$\begin{gathered} -0.0158^{* * *} \\ (0.00362) \end{gathered}$
$D^{[30,35)}$	$\begin{aligned} & -0.00492^{*} \\ & (0.00289) \end{aligned}$	$\begin{aligned} & -0.00487^{*} \\ & (0.00287) \end{aligned}$	$\begin{aligned} & -0.00580^{*} \\ & (0.00307) \end{aligned}$	$\begin{gathered} -0.00690^{* *} \\ (0.00305) \end{gathered}$
$D^{[35,40)}$	$\begin{aligned} & -0.00558^{*} \\ & (0.00325) \end{aligned}$	$\begin{aligned} & -0.00568^{*} \\ & (0.00323) \end{aligned}$	$\begin{aligned} & -0.00617^{*} \\ & (0.00315) \end{aligned}$	$\begin{gathered} -0.00716^{* *} \\ (0.00313) \end{gathered}$
$D^{[40,45)}$	$\begin{gathered} -0.0265^{* *} \\ (0.00360) \end{gathered}$	$\begin{aligned} & -0.0260^{* * *} \\ & (0.00358) \end{aligned}$	$\begin{aligned} & 0.00529^{*} \\ & (0.00321) \end{aligned}$	$\begin{gathered} 0.00382 \\ (0.00319) \end{gathered}$
$D^{[45,50)}$	$\begin{gathered} -0.0266^{* * *} \\ (0.00366) \end{gathered}$	$\begin{gathered} -0.0277^{* * *} \\ (0.00365) \end{gathered}$	$\begin{aligned} & 0.0106^{* * *} \\ & (0.00327) \end{aligned}$	$\begin{gathered} 0.00883^{* * *} \\ (0.00325) \end{gathered}$
$D^{[50,55)}$	$\begin{gathered} -0.0615^{* * *} \\ (0.00370) \end{gathered}$	$\begin{gathered} -0.0623^{* * *} \\ (0.00369) \end{gathered}$	$\begin{gathered} -0.00872^{* * *} \\ (0.00337) \end{gathered}$	$\begin{gathered} -0.00968^{* * *} \\ (0.00336) \end{gathered}$
$D^{[55,60)}$	$\begin{gathered} -0.0681^{* * *} \\ (0.00358) \end{gathered}$	$\begin{gathered} -0.0691^{* * *} \\ (0.00357) \end{gathered}$	$\begin{gathered} -0.0226^{* * *} \\ (0.00348) \end{gathered}$	$\begin{gathered} -0.0244^{* *} \\ (0.00346) \end{gathered}$
$D^{[60,65)}$	$\begin{aligned} & -0.107^{* * *} \\ & (0.00367) \end{aligned}$	$\begin{aligned} & -0.108^{* * *} \\ & (0.00366) \end{aligned}$	$\begin{gathered} -0.0607^{* * *} \\ (0.00366) \end{gathered}$	$\begin{gathered} -0.0619^{* * *} \\ (0.00364) \end{gathered}$
$D^{[65,70)}$	$\begin{aligned} & -0.178^{* * *} \\ & (0.00376) \end{aligned}$	$\begin{aligned} & -0.178^{* * *} \\ & (0.00376) \end{aligned}$	$\begin{aligned} & -0.129^{* * *} \\ & (0.00371) \end{aligned}$	$\begin{aligned} & -0.129^{* * *} \\ & (0.00370) \end{aligned}$
$D^{[70,75)}$	$\begin{aligned} & -0.248^{* * *} \\ & (0.00414) \end{aligned}$	$\begin{aligned} & -0.248^{* * *} \\ & (0.00415) \end{aligned}$	$\begin{aligned} & -0.199^{* * *} \\ & (0.00413) \end{aligned}$	$\begin{aligned} & -0.200^{* * *} \\ & (0.00413) \end{aligned}$
$D^{[75,80)}$	$\begin{aligned} & -0.339^{* * *} \\ & (0.00484) \end{aligned}$	$\begin{aligned} & -0.338^{* * *} \\ & (0.00484) \end{aligned}$	$\begin{aligned} & -0.288^{* * *} \\ & (0.00466) \end{aligned}$	$\begin{aligned} & -0.288^{* * *} \\ & (0.00465) \end{aligned}$
$D^{[80, \infty)}$	$\begin{aligned} & -0.544^{* * *} \\ & (0.00623) \end{aligned}$	$\begin{aligned} & -0.542^{* * *} \\ & (0.00624) \end{aligned}$	$\begin{aligned} & -0.474^{* * *} \\ & (0.00578) \end{aligned}$	$\begin{aligned} & -0.471^{* * *} \\ & (0.00579) \\ & \hline \end{aligned}$
Age variable	Average	Average	Reference	Reference
Time FE	Yes	No	Yes	No
Region-Time FE	No	Yes	No	Yes
Observations	1226631	1221006	1226631	1221006
R^{2}	0.093	0.101	0.080	0.088

Standard errors in parentheses clustered at the household level

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Figure A11: Accounting for structural change in the US, using reference person's age

Notes: This figure displays the decomposition (10) for the US from 1982 to 2016, using the age of the reference person as the age variable.

Figure A12: Accounting for structural change in the US, using housing as service

Notes: This figure displays the decomposition (10) for the US from 1982 to 2016, using the average age of members as the age variable and including housing as part of service consumption.

D Rescaling CES expenditure data

This section rescales the expenditure data in the Consumption Expenditure Survey to match the aggregate Personal Consumption Expenditure shares reported by the BEA. In principle, these data need not coincide, since they are collected from different sources. ${ }^{8}$ One important difference arises in health expenditures, since the CES data only include out-of-pocket expenses, while the PCE also include private insurance, medicaid, and medicare expenditures.

Unfortunately, our analysis cannot be carried out with the BEA data, since these data do not break down the expenditure shares by type of households. This appendix reports the results of a hybrid approach, in which we rescale the CES household-level expenditure shares to match the BEA aggregates.

We proceed in two steps. First, we rescale health expenditures on the CES using data from National Health Expenditure Survey (NHES). These data contains expenditures by type of medical commodity (e.g. prescription drugs, dental services) and by type of payer (Medicaid, Medicare, Private Insurance, Out-of-Pocket, Others). In contrast, the CES only contains out of pocket expenditures. With this in mind, we re-scale expenditures on health of household j in age group a as:

$$
\overline{\exp }_{j, a}^{H}=\frac{\exp _{j, a}^{H, C E X}}{X_{a}^{N H E S}} .
$$

Here, $\exp _{j . a}^{H, C E X}$ denotes health expenditures in the CEX (which are all out of pocket), $\exp _{j . a}^{O P, N H E S}$ denotes out of pocket expenditures in the NHES, and $\exp _{j . a}^{H, C E X}$ are out-ofpocket expenditures in the NHES.

In the second step we rescale all expenditures in the CEX to match the aggregate expenditures in the BEA data. This approach is valid under the assumption that the micro variation across households in the CES is an accurate reflection of the differences in spending patterns by age group, and only the aggregate shares are inaccurate (this assumption is not needed for the health expenditures, since these are rescaled using the NHES data). Specifically, after concording the expenditure categories in the CES to Personal Consumption Expenditure items in the BEA data, we compute total expenditures in the CES $e_{t}^{j, C E S}$ for each category j and year t. We then create the scaling factor that reflects the discrepancy in the aggregate expenditure between the CES and the BEA: $X_{t}^{j}=e_{t}^{j, C E S} / e_{t}^{j, B E A}$. Then, we rescale the consumption expenditure of each household:

[^5]$e_{t}^{j, h}=e_{t}^{j, h, C E S} \times X_{t}^{j}$. In this way, the aggregate expenditure on each category in each year in the CES in these rescaled data match the BEA aggregates in every category and year.

Using the rescaled expenditures, we compute the expenditure shares $\omega_{t}^{j, h} \equiv e_{t}^{j, h} / \sum_{j} e_{t}^{j, h}$, and the total expenditures by household: $e_{t}^{h} \equiv \sum_{j} e_{t}^{j, h}$. From this, we compute the new e_{t}^{h} / e_{t}. These give us all the elements of a new dataset, on which we repeat the householdlevel estimation in Section 2.2 and the quantitative analysis of Section 2.2.

Figure A13 plots the cumulative log change in the aggregate expenditure share on services in the BEA PCE data. These data show a somewhat larger change than the CES, with the expenditure share of services rising by $24 \log$ points. Figure A14 shows the service expenditure shares for households of different ages, and the three time periods. The magnitudes of the differences across households are similar to the baseline analysis. Figure A15 breaks down by income quartile, while Figure A16 reports the age dummies controlling for income, as in equation (2). The results are quite similar to the baseline.

Figure A13: Service consumption share, BEA

Notes: This figure plots the cumulative log change in the service expenditure share in the BEA PCE data. Housing is excluded from expenditures.

Figure A14: Service consumption by average age of household members, rescaled to BEA

Notes: Authors' calculations based on the Consumer Expenditure Survey rescaled to the BEA. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.

Figure A15: Service consumption by average age of household members and income, rescaled to BEA

Notes: Authors' calculations based on the Consumer Expenditure Survey, rescaled to BEA. Housing is excluded from expenditures. See Appendix Table A5 for a classification of the CES categories into goods and services.

Figure A16: Age dummies rescaled to BEA

Notes: Each dot represents the point estimate of the age dummies in Equation (2) for a particular decade in the CES data. The omitted dummy is that of age group 25-30. The bands report the 95% confidence intervals based on standard errors clustered at the household level.

Table A9 reports the differences in consumption expenditures by category for older households, expressed as a difference relative to the households aged 25-30. While the ranking of categories according to young-old expenditure share differences is similar, the BEA-rescaled data show larger absolute differences in Healthcare.

Moving on to the replication of the results in Section 2.2, Tables A10-A11 report the changes in the services expenditure shares and income shares, and the within-between decomposition. In the BEA-rescaled data, population aging accounts for 10.7% of the rise in the service expenditure share.

Figure A17: Evolution of expenditure share on selected service categories using CES and re-scaling to BEA

Notes: 'Old' refers to the economy wide expenditure share in categories that are disproportionally consumed by the old: Health, Utilities and Personal Services. 'Young' refers to the remaining categories.

Table A9: Differences in expenditures by consumption category: $25-30$ vs $60-65,65-70$, 70-75, 75-80 and 80+, rescaled to BEA

	Age groups				
	$60-65$	$65-70$	$70-75$	$75-80$	$80+$
Health	2.21	3.34	4.53	5.98	7.91
Domestic services and childcare	0.50	0.91	1.38	2.29	5.85
Food at home	-1.10	0.14	1.94	4.00	5.63
Utilities	0.54	0.81	1.36	2.03	2.95
Personal Insurance	5.69	4.59	3.81	1.79	1.49
Personal care services	0.11	0.21	0.35	0.46	0.63
Personal care goods	-0.01	-0.01	-0.01	-0.02	-0.01
Public transport	0.25	0.31	0.29	0.31	-0.07
Car maintenance, repairs	-0.19	-0.20	-0.18	-0.01	-0.61
Shoes and other apparel	-0.44	-0.51	-0.61	-0.84	-0.84
Tobacco	0.05	-0.18	-0.43	-0.69	-0.94
Entertainment fees, adm., reading	-0.15	-0.09	-0.15	-0.50	-1.05
Children's clothing	-0.94	-0.93	-1.06	-1.12	-1.24
Alcoholic beverages	-0.44	-0.56	-0.76	-1.01	-1.26
Furnitures and Fixtures	-0.21	-0.28	-0.65	-0.84	-1.33
Appliances	0.22	-0.11	-0.39	-0.61	-1.46
Men's and women's clothing	-0.35	-0.54	-0.61	-0.99	-1.62
Entertainment equipment	-0.15	-0.51	-1.26	-1.48	-1.85
Food away from home	-0.89	-0.90	-1.21	-1.57	-2.17
Education	-2.08	-2.25	-2.27	-2.15	-2.29
Gas	-0.73	-0.93	-1.17	-1.49	-2.46
Vehicle purchasing, leasing	-1.91	-2.32	-2.88	-3.55	-5.26
Services	6.00	6.73	7.90	8.63	12.65

Notes: This Table reports the differences in expenditure shares across the major consumption categories between households aged 60-65 (first panel) or 80+ (second panel) and households aged 25-30. Source: authors' calculations based on the CES, rescaled to BEA.

Table A10: Population aging and the services share, rescaled to BEA

	Pop $_{1982}$	s_{1982}^{a}	$\omega_{1982}^{s, a}$	Pop $_{2016}$	s_{2016}^{a}	$\omega_{2016}^{s, a}$
$0-25$	31.8	30.9	43.3	20.4	19.1	56.0
$25-30$	13.5	16.0	46.1	11.4	11.9	58.3
$30-35$	9.4	11.6	48.6	9.4	11.0	61.1
$35-40$	6.2	7.8	49.7	7.1	8.1	61.1
$40-45$	4.6	5.4	49.7	5.9	6.9	64.3
$45-50$	3.6	4.0	51.8	5.2	5.6	61.5
$50-55$	3.8	3.9	48.4	6.1	6.2	62.0
$55-60$	5.1	4.9	50.6	6.7	7.1	63.7
$60-65$	5.7	5.3	52.5	7.5	7.5	64.6
$65-70$	5.9	4.6	55.3	6.8	6.3	64.2
$70-75$	4.3	2.8	57.5	5.1	4.6	66.2
$75-80$	3.3	1.7	57.1	3.4	2.6	65.4
$80+$	2.9	1.2	65.7	5.0	3.0	70.0

Notes: Authors' calculations based on the CES, rescaled to BEA. 'Pop' reports the share of the population in each age group. s_{t}^{a} and ω_{t}^{a} are defined as in Equation (4).

Table A11: Within-between decomposition, rescaled to BEA

	Average		Reference	
	Value	$\%$	Value	
	$\%$			
Within	0.119	89.3	0.119	89.5
Between	0.014	10.7	0.014	10.5
Total	0.133	100	0.133	100

Notes: The table reports the results from the decomposition in equation (4). 'Average-age' uses the average age across all household member as the age of the household. 'Reference age' uses the age of the reference person in the household.

Tables A12-A13 re-estimate the model parameters on the BEA-rescaled data, while Figure A18 reports the decomposition of the US structural change. None of the substantive conclusions change when using these data. Population aging contributes modestly, but positively, to structural change in the US, with the total contribution of about 4 log points since 1982.

Table A12: Estimates of equation (8), rescaled to BEA

	(1)	(2)	(3)	(4)
	$\log \omega_{t}^{g, n}$	$\log \omega_{t}^{g, n}$	$\log \omega_{t}^{g, n}$	$\log \omega_{t}^{g, n}$
$\log e_{t}^{n}$	$-0.142^{* * *}$	$-0.143^{* * *}$	$-0.205^{* * *}$	$-0.207^{* * *}$
	(0.000737)	(0.000737)	(0.00205)	(0.00205)
Type	OLS	OLS	IV	IV
Time FE	Yes	No	Yes	No
Region-Time FE	No	Yes	No	Yes
Observations	$1,323,316$	$1,317,535$	$1,224,638$	$1,219,015$
R^{2}	0.164	0.167	0.148	0.152

Standard errors in parentheses
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Table A13: Estimates of equation (9), rescaled to BEA

	(1)	(2)
	Ω_{t}^{g}	Ω_{t}^{g}
$b_{1}=\gamma$	$0.305^{* * *}$	$0.312^{* * *}$
	(0.00764)	(0.00761)
Age	Average	Reference
Observations	35	35
R^{2}	0.979	0.980
Standard errors in parentheses		
${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$		

Figure A18: Accounting for structural change in the US, rescaled to BEA.

Notes: This figure displays the decomposition (10) for the US from 1982 to 2016, using data rescaled to BEA.

[^0]: *We are grateful to workshop participants at Michigan for helpful suggestions. Financial support from the National Science Foundation under grant SES-1628879 is gratefully acknowledged. Email: jcravino@umich.edu, alev@umich.edu, rojasmi@umich.edu.

[^1]: ${ }^{1}$ It is well known that the aggregate expenditure shares in the CES do not match those in the Personal Consumption Expenditure module of the National Income and Product Accounts compiled by the BEA. An alternative to simply using the CES data is to rescale the household-specific expenditures in the CES so as to match the aggregate expenditure shares in the BEA PCE. Appendix D describes the rescaling procedure and replicates the results in this section and Section 2.2 using the rescaled dataset.
 ${ }^{2}$ See Appendix Table A5 for the breakdown. We divide the sectors "Personal care" and "Other vehicle expenses" into their service and goods components. For instance, "Gasoline and motor oil" is considered a good, and "Public transport" and "Car maintenance, repairs and insurance" are considered services.

[^2]: ${ }^{3}$ This assumes that within age groups income and idiosyncratic preferences are uncorrelated, $\operatorname{cov}\left[\mu_{t}^{h}, e_{t}^{h} \mid a\right]=0$.

[^3]: ${ }^{4}$ In practice our estimation controls for price effects with region-time dummies $\delta_{r, t}$ rather than time dummies, to absorb regional variation in relative prices of services. Allowing for region-specific price changes has almost no effect on the estimates of μ^{a} or ϵ.
 ${ }^{5}$ This may be because our regression controls for household age, our classification of expenditures into goods and services differs from that in Boppart (2014), and we use somewhat different years.
 ${ }^{6}$ Again, this is somewhat smaller than the 0.4 elasticity found by Boppart (2014), for the reasons listed in Footnote 5.

[^4]: ${ }^{7}$ We use the approximation $\hat{\Omega}_{t}^{s} \approx-\frac{\Omega_{82}^{g}}{\Omega_{82}^{8}} \hat{\Omega}_{t}^{g}$.

[^5]: ${ }^{8}$ The CES collects expenditures from households surveys, while the BEA final sales made by businesses in a way that is consistent with the consistent with the National Income and Product Accounts

