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Abstract

This paper uses sector-level data for 30 countries and up to 28 years to provide a quantitative
account of the sources of international GDP comovement. We propose an accounting framework
to decompose comovement into the components due to correlated shocks, and to the transmission
of shocks across countries. We apply this decomposition in a multi-country multi-sector DSGE
model. We provide an analytical solution to the global influence matrix that characterizes every
country’s general equilibrium GDP elasticities with respect to various shocks anywhere in the
world. We then provide novel estimates of country-sector-level technology and non-technology
shocks to assess their correlation and quantify their contribution to comovement. We find that
TFP shocks are virtually uncorrelated across countries, whereas non-technology shocks are posi-
tively correlated. These positively correlated shocks account for two thirds of the observed GDP
comovement, with international transmission through trade accounting for the remaining one
third. However, trade opening does not necessarily increase GDP correlations relative to au-
tarky, because the contribution of trade openness to comovement depends on whether sectors
with more or less correlated shocks grow in influence as countries increase input linkages. Finally,
while the dynamic model features rich intertemporal propagation of shocks, quantitatively these
components contribute little to the overall GDP comovement as impact effects dominate.
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1 Introduction

Real GDP growth is positively correlated across countries. In spite of a large amount of research into
the causes of international comovement, we still lack a comprehensive account of this phenomenon.
Two related themes cut through the literature. First, does comovement occur because shocks are
transmitted across countries via propagation mechanisms such as trade linkages (e.g. Frankel and
Rose, 1998; di Giovanni, Levchenko, and Mejean, 2018), or because the shocks themselves are cor-
related across countries (Imbs, 2004)? Second, is international comovement driven predominantly
by technology (Backus, Kehoe, and Kydland, 1992) or non-technology (Stockman and Tesar, 1995)
shocks?

This paper provides a general and unified framework to answer both of these questions. To clarify
the mechanisms at play and objects of interest for measurement, we start by setting up a simple
accounting framework that extends the standard input network propagation model (e.g. Acemoglu
et al., 2012) to an international setting. The GDP covariance between two countries can be ex-
pressed as a function of the covariances between primitive shocks and a global influence matrix. The
latter collects the general equilibrium elasticities of GDP in each country with respect to all sector-
country-specific shocks worldwide, and thus translates the variances and covariances of the primitive
shocks into comovements of GDP. In particular, two countries can experience positive comovement
if influential sectors in the two economies have correlated shocks. Comovement also arises if shocks
in one country influence another country’s GDP through trade and production linkages. We show
that the GDP covariance between two countries can be written as a sum of two terms, respectively
capturing correlated shocks and transmission.

The accounting framework provides a road map for the measurement and quantification exercises that
follow. First, we must measure underlying shocks to determine the extent of their correlation across
countries. Second, we must impose sufficient structure and bring sufficient data on international
trade linkages to recover the global influence matrix. This will allow us to establish both how the
matrix interacts with the shock correlation, and how it produces transmission.

The quantification combines sector-level data for 30 countries and up to 28 years with a multi-
country, multi-sector, multi-factor DSGE model of world production and trade. Countries trade
both intermediate and final goods. Each sector uses labor, capital, and intermediate inputs that
can come from any sector and country in the world, and is subject to sector-specific TFP shocks.
Between periods, capital and employees can be accumulated in each sector. However, within a period,
labor and capital supply to each sector and country are upward-sloping in the real prices of labor and
capital, respectively, and subject to sector-specific factor supply shocks. The model features standard
international transmission mechanisms. A positive foreign shock lowers the prices of intermediate
inputs coming from that country, stimulating demand in countries and sectors that use those inputs
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in production. At the same time, a positive shock in a foreign country makes final goods supplied
by that country cheaper, reducing demand for final goods produced by countries competing with it
in final goods markets.

We implement two versions of the model. The first is a static setting akin to the network literature
(e.g. Acemoglu et al., 2012; Baqaee and Farhi, 2018). Closed-economy frameworks of shock propa-
gation through a network write the change in real GDP as an inner product of the vector of sectoral
shocks and the influence vector. We extend this approach to an international setting, and write the
change in GDP of a single country as an inner product of the vector of shocks to all countries and
sectors in the world and the country-specific influence vector that collects the elasticities of that
country’s GDP to every sectoral shock in the world. A unique feature of our analysis is that we
provide an analytical solution for the first-order approximation to this influence vector in a multi-
country general equilibrium setting. This analytical solution expresses the influence matrix in terms
of observables that can be measured and structural elasticities.

The network propagation approach captures intra-temporal comovement but shuts down dynamic
factor accumulation responses to shocks. An important feature of our theoretical framework is that
the static and dynamic responses of the world economy to shocks are separable. That is, the analytical
influence matrix characterizes the contemporaneous response of the world economy to shocks even
in the fully dynamic model. Our framework thus bridges the network propagation and the dynamic
international business cycle literatures. Our second set of exercises implements the dynamic version
of the model, in which sectoral capital and labor can respond to both foreign and domestic shocks,
subject to adjustment costs.

The quantitative framework provides a theoretical foundation for shock measurement. We begin
by estimating utilization-adjusted TFP growth rates in our sample of countries, sectors, and years.
When unobserved factor utilization responds to shocks, conventional Solow residuals are a misleading
measure of technology shocks. Our model captures the notion of variable factor utilization: even
conditional on the observed number of installed machines and employee-hours, the utilization rate
of those machines and the employees’ effort can vary within a period in response to shocks. When
true factor usage is not perfectly observed, it must be accounted for in the estimation of shocks. Our
approach uses the insights of Basu, Fernald, and Kimball (2006, henceforth BFK), who estimate TFP
shocks for the United States controlling for unobserved input utilization and industry-level variable
returns to scale. Importantly, they show that doing so produces a TFP series with substantially
different properties than the traditional Solow residual. We bring this insight into the international
context by estimating utilization-adjusted TFP series for a large sample of countries, and analyzing
the international correlations in these series.

Next, we extract a non-technology shock. In the model, the non-technology shock is a sector-specific
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shift in the within-period factor supply curve. This shock can be viewed as a generalization of the
“labor wedge” (e.g. Chari, Kehoe, and McGrattan, 2007). Though reduced-form, this shock has
a variety of microfoundations, such as sentiment shocks (e.g. Angeletos and La’O, 2013; Huo and
Takayama, 2015), monetary policy shocks under sticky wages (Galí, Gertler, and López-Salido, 2007;
Chari, Kehoe, and McGrattan, 2007), or shocks to working capital constraints (e.g. Neumeyer and
Perri, 2005; Mendoza, 2010). Our procedure infers it as the shock that rationalizes the observed
growth in real value added, conditional on the global vector of TFP shocks, predetermined factors,
and the input linkages in the data. Because all the sectors are connected through domestic and
international trade, the entire global vector of non-technology shocks is inferred jointly.

Our first main finding is about the properties of the shocks themselves. We show that TFP growth
is virtually uncorrelated across countries. In contrast, the aggregated non-technology shocks are
quite correlated among the G7 countries, with correlation coefficients about one half of the observed
correlation in real GDPs. Correspondingly, when we feed these measured shocks back into the model,
the non-technology shocks are much more successful at generating GDP correlations than TFP shocks
in the G7.

We next decompose the overall comovement into the correlated shocks and transmission components,
as suggested by the accounting framework. Our second main finding is that correlated shocks account
for about two thirds of the total GDP correlation, with the transmission component responsible for
the remaining one third.

To further explore the role of the input network in generating comovement, we compare the baseline
economy to counterfactuals in which countries are in autarky. This exercise reveals an underappre-
ciated mechanism through which trade opening affects GDP comovement: it changes the relative
influence of domestic sectors. Whether trade opening increases or lowers GDP comovement depends
in part on whether it leads to the expansion or contraction of sectors with more correlated shocks.
Our third main finding is that among the G7 countries autarky GDP correlations can actually be
quite a bit higher than the corresponding correlations under trade.

To better understand this paradoxical result, we write the difference in GDP comovement between
the trade and autarky equilibria as a sum of two terms: the international transmission of shocks,
and the changes in the influence of the domestic shocks times the covariances of those shocks. While
international transmission is positive in the trade equilibrium and increases comovement relative to
autarky, it turns out that in the G7 sample the second term is negative. Moving from autarky to
trade increases the relative influence of sectors whose shocks are less correlated, offsetting the positive
international transmission and producing the outcome that autarky correlations are higher than the
trade ones. These results reveal the unexpected role of input linkages in cross-border comovement:
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they can lead to diversification away from the most internationally correlated sectors.1

Finally, we implement the full dynamic model to evaluate how delayed propagation of past shocks
contributes to comovement. The model features non-trivial propagation over time, with the peak
impact of a foreign shock occurring with a delay of several periods. Nonetheless, simulated model
correlations with dynamics are not appreciably higher than the correlations in the static model. The
overall GDP covariance can be written as the sum of the covariance of the instantaneous change in
GDPs due to a shock innovation, and the infinite sum of responses to all the past innovations. The
component capturing the impact effects of shocks predominates. Quantitatively, the intertemporal
transmission is much less important for comovement than these impact effects.

Our paper draws from, and contributes to two literatures. The first is the effort to understand
international business cycle comovement. A large literature builds models in which fluctuations are
driven by productivity shocks, and asks under what conditions those models can generate observed
international comovement (see, among many others, Backus, Kehoe, and Kydland, 1992; Heathcote
and Perri, 2002). A smaller set of contributions adds non-technology shocks (Stockman and Tesar,
1995; Wen, 2007). In these analyses, productivity shocks are proxied by the Solow residual, and non-
technology shocks are not typically measured based on data. Our quantitative assessment benefits
from improved measurement of both types of shocks. While all papers on international business cycle
comovement must take a stand on the relative importance of correlated shocks vs. transmission, we
provide a way of cleanly separating these two potential sources of comovement. A number of papers
are dedicated to documenting international correlations in productivity shocks and inputs (e.g. Imbs,
1999; Kose, Otrok, and Whiteman, 2003; Ambler, Cardia, and Zimmermann, 2004). Also related is
the body of work that identifies technology and demand shocks in a VAR setting and examines their
international propagation (e.g. Canova, 2005; Corsetti, Dedola, and Leduc, 2014; Levchenko and
Pandalai-Nayar, 2018). Relative to these papers, we use sector-level data to provide novel estimates
of both utilization-adjusted TFP and non-technology shocks, and expand the sample of countries.

The second is the active recent literature on shock propagation in production networks (e.g. Carvalho,
2010; Acemoglu et al., 2012; Barrot and Sauvagnat, 2016; Carvalho et al., 2016; Atalay, 2017; Baqaee,
2018; Baqaee and Farhi, 2018; Boehm, Flaaen, and Pandalai-Nayar, 2019). We contribute to this
literature in two ways. First, we extend its insights to an international setting, building on the
earlier contributions such as Kose and Yi (2006), Bems, Johnson, and Yi (2010), Johnson (2014),
and Eaton et al. (2016) among others. And second, we measure the primitive shocks and explore
the consequences of correlated shocks in an input network setting.

1This is a purely quantitative result, arising from the particular correlation properties of the estimated shocks
and input coefficients. Nonetheless, it is a counterexample to the effect often invoked in the optimum currency area
literature, whereby trade integration is expected to increase comovement by making aggregate shocks more correlated
(e.g. Frankel and Rose, 1998). We reveal an alternative mechanism, through which countries become less correlated
with trade integration despite the same underlying sectoral shocks.
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The rest of the paper is organized as follows. Section 2 lays out a basic GDP accounting framework
and presents the decompositions of the sources of comovement. Section 3 introduces the dynamic
multi-country, multi-sector quantitative framework of production and trade. Section 4 describes
the procedures for measuring the shocks, and the properties of these shocks. Section 5 uses the
model to perform static counterfactuals and illustrate the role of the input network in international
comovement. Section 6 presents the dynamic counterfactuals. Section 7 concludes. The appendices
collect additional details of the estimation and theoretical framework as well as robustness checks.

2 Accounting Framework

Consider an international version of the standard static network propagation model (e.g. Acemoglu
et al., 2012). There are J sectors indexed by j and i, and N countries indexed by n and m. Gross
output in sector j country n aggregates a generic primary factor input bundle Inj (for instance,
capital and labor) and materials inputs Xnj :

Ynj = F (Inj(θ), Xnj(θ);θ) . (2.1)

The bundle of inputs Xnj can include foreign imported intermediates. The sectoral output is af-
fected by a generic matrix of shocks θ. For concreteness, one can think of productivity shocks. A
productivity shock θnj to sector j in country n will directly affect output in that sector. Because
the economy is interconnected through trade, output in every sector and country is in principle a
function of all the shocks anywhere in the world, hence the dependence of Ynj on the full world vector
θ. The matrix θ can include multiple types of shocks (such as technology and non-technology). The
next section completely specifies the shocks, and the nature of output’s dependence on those shocks
in the context of a particular model.

Real GDP is defined as value added evaluated at base prices b:

Yn =

J∑
j=1

(
Pnj,bYnj(θ)− PXnj,bXnj(θ)

)
, (2.2)

where Pnj,b is the gross output base price, and PXnj,b is the base price of inputs in that sector-country.

Let θmi be a scalar-valued shock affecting sector i in country m.2 A first order approximation to the
log change in real GDP of country n can be written as:

d lnYn ≈
∑
m

∑
i

smniθmi, (2.3)

2The extension to vector-valued θmi is straightforward, i.e. each sector can experience multiple shocks simultane-
ously.

5



where smni are the elements of the global influence matrix, that give the elasticity of the GDP of
country n with respect to shocks in sector i, country m. Notice that these elasticities capture the full
impact of a shock through direct and indirect input-output links and general equilibrium effects.3

To highlight the sources of international GDP comovement, write real GDP growth as

d lnYn =
∑
j

snnjθnj︸ ︷︷ ︸
Dn

+
∑
j

smnjθmj︸ ︷︷ ︸
Pn

+
∑

n′ 6=n,m

∑
j

sn′njθn′j︸ ︷︷ ︸
Tn

. (2.4)

This equation simply breaks out the double sum in (2.3) into the component due to country n’s own
shocks (Dn), the component due to a particular trading partner m’s shocks (Pn), and the impact of
“third” countries that are neither n nor m (Tn).

Then, the GDP covariance between country n and country m is:

Cov(d lnYnt, d lnYmt) = Cov(Dn,Dm)︸ ︷︷ ︸
Shock Correlation

(2.5)

+ Cov(Dn,Pm) + Cov(Pn,Dm) + Cov(Pn,Pm)︸ ︷︷ ︸
Bilateral Transmission

+ Cov(Dn + Pn + Tn, Tm) + Cov(Tn,Dm + Pm)︸ ︷︷ ︸
Multilateral Transmission

.

This expression underscores the sources of international comovement. The first term, Cov(Dn,Dm),
captures the fact that economies might be correlated even in the absence of trade if the underlying
shocks themselves are correlated, especially in sectors influential in the two economies. The shock
correlation term can be written as:

Cov(Dn,Dm) =
∑
j

∑
i

snnjsmmiCov(θnj , θmi).

Thus, a full account of international comovement would have to start with a reliable estimation of
the shock processes hitting the economies.

The second term captures bilateral or direct transmission. If the GDP of country n has an elasticity
with respect to the shocks occurring in country m (smni > 0), that would contribute to comovement

3The form of smni is known for some simple economies. For instance, if country n is in autarky, factors of production
are supplied inelastically, and returns to scale are constant, snni = PniYni/PnYn are the Domar weights (Hulten, 1978;
Acemoglu et al., 2012), and smni = 0 ∀m 6= n. We derive a first-order closed-form solution to the influence matrix in
our model economy with international trade in Section 3.1.
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as well. Taking one of the terms of the Bilateral Transmission component:

Cov(Dn,Pm) =
∑
j

∑
i

snnjsnmiCov(θnj , θni)

= s′nnΣnsnm, (2.6)

where Σn is the J×J covariance matrix of shocks in country n, and snm is the J×1 influence vector
collecting the impact of shocks in n on GDP in m. This expression underscores that one source of
comovement is that under trade, both country n and country m will be affected by shocks in n.

Finally, the Multilateral Transmission term collects all the other sources of comovement between n
and m that do not come from shocks to either n or m, such as shocks in other countries.

Comovement in Autarky We can now write the difference in covariances between autarky and
trade as a sum of two terms:

∆Cov(d lnYn, d lnYm) =
∑
j

∑
i

(
snnjsmmi − sAUTnj sAUTmi

)
Cov(θnj , θmi)︸ ︷︷ ︸

∆Shock Correlation

+ Bilateral Transmission + Multilateral Transmission, (2.7)

where sAUTmi are the elements of the influence vectors in autarky. This expression shows that trade
opening can affect GDP covariance in two ways. First, it can make countries sensitive to foreign
shocks, as captured by the bilateral and multilateral transmission terms. Second, and more subtly,
opening to trade can re-weight sectors in the two economies either towards, or away, from sectors
with more correlated fundamental shocks. This is captured by the first line of the equation above.

Dynamic Decomposition These decompositions generalize to a dynamic environment in which
shocks can have prolonged effects on output. In that case, GDP in period t, Ynt, is potentially a
function of all the history of shocks {θt−k}∞k=0:

d lnYnt ≈
∞∑
k=0

∑
m

∑
i

smni,kθmi,t−k, (2.8)

where θmi,t is now interpreted as the time-t innovation to the shock process. All the results above
are generalized simply by adding a summation over k.4

We can decompose overall comovement into the static (contemporaneous) and dynamic components.
4That is, (2.6) is unchanged, while Dn becomes Dn =

∑∞
k=0

∑
j snnj,kθnj,t−k, for example.
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The covariance between countries n and m can be written as:

Cov(d lnYnt, d lnYmt) =
∞∑
k=0

s′n,kΣsm,k, (2.9)

where sn,k is the NJ × 1 influence vector collecting the impact of all worldwide innovations k
periods ago on country n, and Σ is the covariance matrix of innovations. Thus, the overall GDP
covariance is additive in the component due to the contemporaneous innovations s′n,0Σsm,0 and the
dynamic propagation of past shocks. The contemporaneous component is also notable because in
the quantitative framework below, the contemporaneous influence vector sn,0 in the fully-specified
dynamic model coincides with the influence vector in a static model that only features instantaneous
propagation of shocks.

To summarize, in order to provide an account of international comovement, we must (i) measure
shocks in order to understand their comovement properties; and (ii) assess how sectoral composi-
tion (the distribution of snnj ’s) translates sectoral comovement of the primitive shocks into GDP
comovement. Further, in order to understand the contribution of international trade to international
comovement, we must (iii) capture not only the cross-border elements of the influence vectors (the
snmj ’s), but also how going from autarky to trade changes the sectoral composition of the economy
(the differences between snnj and sAUTnj ). Finally, (iv) we must discipline the persistence of both
the shocks and equilibrium adjustments over time in order to quantify the relative importance of
contemporaneous vs. intertemporal correlation.

3 Quantitative Framework

The decomposition above is general and would apply in any production economy. However, any
measurement of shocks and of the elements of the influence matrix requires additional theoretical
structure. We now provide one such theoretical framework and use it to quantify the role of correlated
shocks and transmission through networks.

Preliminaries Each country n is populated by a representative household. The household con-
sumes the final good available in country n and supplies labor and capital to firms. Trade is subject to
iceberg costs τmnj to ship good j from country m to country n (throughout, we adopt the convention
that the first subscript denotes source, and the second destination).

Our benchmark model assumes financial autarky. There are two reasons behind this assumption.
First, as highlighted by Heathcote and Perri (2002), models featuring financial autarky outperform
complete and incomplete markets models in accounting for business cycle comovement. Second, we
will use the model to derive the influence matrix of GDP elasticities to shocks everywhere in the
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world. Under financial autarky, this influence matrix can be constructed using only observed export
and import shares, the elasticity of substitution among intermediate goods, and the Frisch elasticity.
Alternative financial market structures would require additional assumptions on the preferences
and technology to derive this matrix. We therefore assume that there are only goods flows across
countries, and further, trade is balanced period by period.5

Households We assume that there is a continuum of workers in a representative household who
share the same consumption. The problem of the household is

max
{Mnjt},{Nnjt},

{Hnjt},{Enjt},{Unjt}

E0

∞∑
t=0

βt Ψ

Cnt −∑
j

ξnjtNnjtG(Hnjt, Enjt, Unjt)−
∑
j

Ξ (Nnjt)

 (3.1)

subject to

Pnt

Cnt +
∑
j

Injt

 =
∑
j

WnjtNnjtHnjtEnjt +
∑
j

RnjtUnjtMnjt

Mnjt+1 = (1− δj)Mnjt + Injt

where Cnt is consumption, Injt is investment, Nnjt is the number of workers employed in sector j,
Hnjt is the number of hours per worker, Enjt is the amount of effort per worker, Mnjt is the amount
of machines (installed capital), and Unjt is the capital utilization rate. We denote the effective total
efficiency units of labor supplied in a sector as Lnjt ≡ NnjtHnjtEnjt, and the effective total efficiency
units of capital supplied as Knjt ≡MnjtUnjt. Labor collects a sector-specific wage Wnjt, and capital
is rented at the price Rnjt.

To proceed to link the model with data, we assume the following functional form for G (.):

G (H,E,U) =

(
H

ψh

)ψh
+

(
E

ψe

)ψe
+

(
U

ψu

)ψu
. (3.2)

We highlight three features of the household problem. First, labor and capital are differentiated by
sector, as the household supplies factors to, and accumulates capital in, each sector separately. In
this formulation, labor and capital are neither fixed to each sector nor fully flexible. As ψι → 1,
ι = h, e, u, factor supply across sectors becomes more sensitive to factor price differentials, in the
limit households supplying variable factors only to the sector offering the highest factor price. At
the opposite extreme, as ψι →∞, the supply of hours, effort, and capital utilization is fixed in each

5We can incorporate deficits in a manner similar to Dekle, Eaton, and Kortum (2008), without much change in our
results.
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sector by the preference parameters.

Second, we assume that the number of employed workers Nnjt and machines Mnjt in a sector is
predetermined. While this approach is standard for machines, it is less common for employment,
where it is usually assumed that hours and employment move in parallel. Specifically, in our model
the number of workers in a particular sector has to be chosen before observing the current shocks
as in Burnside, Eichenbaum, and Rebelo (1993), reflecting the fact that it takes time to adjust the
labor force. Increasing the number of employed workers incurs additional costs Ξ(Nnjt) where

Ξ(N) =

(
N

ψn

)ψn
, (3.3)

which is similar to Kydland and Prescott (1991) and Osuna and Rios-Rull (2003). This cost can
be interpreted literally as a commuting cost, but it should be viewed more broadly as a stand in
for frictions that limit the substitutability between employment and the workweek. The parameter
ψn controls the volatility of employment relative to hours. On the other hand, within a period
households can choose the hours Hnjt and effort Enjt that change the effective amount of labor
supply, and utilization rates Unjt that change the effective amount of capital supply. These margins
capture the idea that utilization rates of factor inputs typically vary over the business cycle. Our
framework thus implies that within a period, labor and capital supply to each sector are upward-
sloping (e.g. Christiano, Motto, and Rostagno, 2014).

Third, our formulation of the disutility of the variable factor supply (3.2) is based on the Greenwood,
Hercowitz, and Huffman (1988) preferences for labor and a similar isoelastic formulation of the
utilization cost of capital. The GHH preferences mute the interest rate effects and income effects
on the choice of hours, effort, and utilization rates, which helps to study the properties of the static
equilibrium where the number of machines and employees are treated as predetermined.

The final use in the economy, denoted Fnt ≡ Cnt +
∑

j Injt, is a Cobb-Douglas aggregate across
sectors. The functional form and its associated price index are given by

Fnt =
∏
j

Fωjnnjt , Pnt =
∏
j

(
P fnjt
ωjn

)ωjn
,

where Fnjt is the final use of sector j in country n, and P fnjt is the final use price index in sector j
and country n. Within each sector, aggregation across source countries is Armington, and the sector
price index is defined in a straightforward way:

Fnjt =

[∑
m

ϑ
1
ρ

mnjFmnjt
ρ−1
ρ

] ρ
ρ−1

, P fnjt =

[∑
m

ϑmnjP
1−ρ
mnjt

] 1
1−ρ

,
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where Fmnjt is final use in n of sector j goods coming from country m, and Pmnjt is the price of
Fmnjt. For goods j, the expenditure share for final goods imported from country m is given by

πfmnjt =
ϑmnjP

1−ρ
mnjt∑

k ϑknjP
1−ρ
knjt

. (3.4)

Static Decision Within a period, the supply curves are isoelastic in the factor prices relative to
the consumption price index. The log of supply of hours, up to a normalization constant, is given
by: (

ψh − 1− ψh
ψe

)
lnHnjt = − ln ξnjt + ln

(
Wnjt

Pnt

)
.

Notice that the households’ intra-temporal optimization problem leads to

HnjtGh(Hnjt, Enjt, Unjt) = EnjtGe(Hnjt, Enjt, Unjt).

Under the functional form adopted for G(.), this condition implies that the choice of effort is a
function of the choice of hours:

lnEnjt =
ψh
ψe

lnHnjt, (3.5)

again up to a normalization constant.

A similar expression can be derived for the relationship between the optimal choice of capital uti-
lization and the optimal choice of hours:

HnjtGh(Hnjt, Enjt, Unjt)

UnjtGu(Hnjt, Enjt, Unjt)
=
WnjtLnjt
RnjtKnjt

.

As we will see from the firms’ problem, the right-hand side of the equation above is equal to the
ratio of output elasticities αj/(1−αj), which is a constant. As a result, the utilization rate also has
a log-linear relationship with hours worked:

lnUnjt =
ψh
ψu

lnHnjt, (3.6)

up to a normalization constant. These properties capture the idea that flexible inputs tend to move
jointly in the same direction, and facilitate the estimation of the utilization-adjusted TFP process
in Section 4. Our setup provides a micro-foundation for the more reduced-form formula used by
Basu, Fernald, and Kimball (2006). It also helps avoid the issue of whether to attribute the costs of
variable factor utilization to labor income or capital income.
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Dynamic Decision As discussed above, households also face intertemporal decisions determining
capital accumulation and labor allocation over time. The first-order condition with respect to capital
accumulation is

Ψ′nt = βEt
[
Ψ′nt+1

(
Rnjt+1

Pnt+1
Unjt+1 + 1− δj

)]
, (3.7)

where Ψ′nt stands for the marginal utility of final goods consumption in country n period t. This con-
dition is similar to the standard Euler equation but is sector-specific and adjusted by the utilization
rate.

The optimality condition with respect to Nnjt+1 is

Et

[
Ψ′nt+1

(
ξnjt+1G(Hnjt+1, Enjt+1, Unjt+1) +

(
Nnjt+1

ψn

)ψn−1
)]

= Et
[
Ψ′nt+1

Wnjt+1

Pnt+1
Hnjt+1Enjt+1

]
.

Note that Nnjt+1 is chosen in period t before observing shocks in period t+ 1. The left hand-side is
the expected marginal disutility of a unit increase in sector j employment, while the right-hand side
is the corresponding marginal utility gain due to higher labor income.

Firms A representative firm in sector j in country n operates a CRS production function

Ynjt = ZnjtΘnjt

(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt , (3.8)

taking as given the total factor productivity ZnjtΘnjt. The intermediate input usage Xnjt is an
aggregate of inputs from potentially all countries and sectors:

Xnjt ≡

∑
m,i

µ
1
ε
mi,njX

ε−1
ε

mi,njt

 ε
ε−1

,

where Xmi,njt is the usage of inputs coming from sector i in country m in production of sector j in
country n, and µmi,nj is the input coefficient.

The total factor productivity consists of two parts: the exogenous shock Znjt and the endogenous
component:

Θnjt =
((
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

)γj−1
, (3.9)

where γj controls possible congestion or agglomeration effects. As a result, the sectoral aggregate
production function is then

Ynjt = Znjt

[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]γj
. (3.10)
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Let Pnjt denote the price of output produced by sector j in country n,6 and let Pmi,njt be the price
paid in sector n, j for inputs from m, i. No arbitrage in shipping implies that the prices “at the
factory gate” and the price at the time of final or intermediate usage are related by:

Pmi,njt = Pmnit = τmniPmit,

where τmni is the iceberg trade cost.

Cost minimization implies that the payments to primary factors and intermediate inputs are:

RnjtKnjt = αjηjPnjtYnjt

WnjtLnjt = (1− αj) ηjPnjtYnjt
Pmi,njtXmi,njt = πxmi,njt (1− ηj)PnjtYnjt, (3.11)

where πxmi,njt is the share of intermediates from country m sector i in total intermediate spending
by n, j, given by:

πxmi,njt =
µmi,nj (τmniPmit)

1−ε∑
k,l µkl,nj (τknlPklt)

1−ε .

Shocks The economy experiences two types of shocks: the conventional TFP shock Znjt in each
sector j and country n, and the non-technology shock ξnjt that enters the household problem in (3.1).
Our framework conceives of ξnjt as a (sector-specific) within-period shift in the variable supply of both
primary factors. This specification follows in the tradition of modeling and measuring business cycle
shocks that are distinct from contemporaneous productivity.7 These can have a literal interpretation
as exogenous shifts in intra-temporal factor supply curves. Alternatively, news shocks (e.g. Beaudry
and Portier, 2006), or sentiment shocks (e.g. Angeletos and La’O, 2013; Huo and Takayama, 2015)
would manifest themselves as shocks to ξnjt, as agents react to a positive innovation in sentiment by
supplying more factors. Straightforward manipulation shows that ξnjt can also be viewed as a shifter
in the optimality condition for factor usage. The literature has explored the aggregate labor version
of this shifter, labeling it alternatively a “preference shifter” (Hall, 1997), “inefficiency gap” (Galí,
Gertler, and López-Salido, 2007), or “labor wedge” (Chari, Kehoe, and McGrattan, 2007). While this
object is treated as a reduced-form residual in much of this literature, we know that monetary policy
shocks under sticky wages (Galí, Gertler, and López-Salido, 2007; Chari, Kehoe, and McGrattan,
2007), or shocks to working capital constraints (e.g. Neumeyer and Perri, 2005; Mendoza, 2010)

6Note this is not the same as the ideal price index P fnjt of sector j final consumption in n, which aggregates imports
from the other countries.

7A variety of measurement exercises attribute a large share of business cycle fluctuations to non-technology shocks.
See, among many others, Blanchard and Quah (1989), Galí (1999), Basu, Fernald, and Kimball (2006), Angeletos,
Collard, and Dellas (2018), and Levchenko and Pandalai-Nayar (2018).
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manifest themselves as shocks to ξnjt.

Our analysis does not cover all possible shocks. In particular, we restrict attention to within-period
shocks, namely productivity and factor supply. An appealing feature of these shocks is that recovering
them requires comparatively little structure and few assumptions. These shocks can be inferred
from within-period relationships, and would thus be recovered correctly under a wide variety of
assumptions, including both static and dynamic models. Relatedly, focusing on these shocks connects
us seamlessly to the network propagation literature following Acemoglu et al. (2012). As in that class
of models, in our framework the impact response of the economy to shocks is captured by the influence
matrix.

Intertemporal shocks that enter the Euler equation have also been considered in the literature.
Extracting these shocks requires significantly more assumptions, most importantly specifying an
asset market structure of the world economy. Existing open-economy implementations use smaller-
scale models and assume complete asset markets (Eaton et al., 2016; Ohanian, Restrepo-Echavarria,
and Wright, 2017). Assessments of Euler equation shocks in closed- and open-economy settings find
them to be the least important in accounting for macro fluctuations (Chari, Kehoe, and McGrattan,
2007; Ohanian, Restrepo-Echavarria, and Wright, 2017). To preserve the relative parsimony in the
specification of shocks, we thus limit our analysis to the two shocks specified above.

Equilibrium An equilibrium in this economy is a set of goods and factor prices {Pnjt,Wnjt, Rnjt},
factor allocations {Mnjt, Nnjt, Hnjt, Enjt, Unjt}, and goods allocations {Ynjt}, {Cnt, Injt, Xmi,njt} for
all countries and sectors such that (i) households maximize utility; (ii) firms maximize profits; and
(iii) all markets clear.

At the sectoral level, the following market clearing condition has to hold for each country n sector j:

PnjtYnjt =
∑
m

PmtFmtωmjπfnmjt +
∑
m

∑
i

(1− ηi)PmitYmitπxnj,mit. (3.12)

Meanwhile, a direct implication of financial autarky is that each country’s expenditure equals the
sum of value added across domestic sectors

PmtFmt =
∑
i

ηiPmitYmit. (3.13)

Combining (3.12) and (3.13):

PnjtYnjt =
∑
m

∑
i

ηiPmitYmitωmjπ
f
nmjt +

∑
m

∑
i

(1− ηi)PmitYmitπxnj,mit. (3.14)
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Note that once we know the share of value added in production ηj , the expenditure shares ωmj , π
f
nmjt,

and πxnj,mit for all n,m, i, j, we can compute the nominal output PnjtYnjt for all country-sectors (n, j)

after choosing a numeraire good. There is no need to specify further details of the model, and we
will utilize this property to derive the influence matrix.

3.1 Analytical Influence Matrix

We now provide an analytical expression for the global influence matrix. In general, closed-form
solutions for the exact influence vectors cannot be obtained in multi-country multi-sector models
such as ours. However, we can solve for the first-order approximation of the influence vector in
our setting. Appendix B provides a more detailed derivation of the influence vector, and evaluates
the fit of the first-order approximation relative to the full nonlinear model solution. The first-order
approximation performs quite well.

The vectors ln Pt and ln Yt of length NJ collect sector-country prices and quantities at time t.
Linearizing the market clearing conditions (3.14), we obtain

ln Pt + ln Yt =

(
Ψf + Ψx

)
(ln Pt + ln Yt)︸ ︷︷ ︸

destination country output variation

+ (3.15)

(1− ρ)

(
diag(ΨfΠf1)−ΨfΠf

)
ln Pt︸ ︷︷ ︸

consumption goods relative price variation

+ (1− ε)
(
diag(ΨxΠx1)−ΨxΠx

)
ln Pt︸ ︷︷ ︸

intermediate goods relative price variation

where Πx and Πf are matrices containing the steady-state import shares of intermediate and final
goods, and Ψx and Ψf are matrices containing the steady-state export shares of intermediate and
final goods.8

Then, equation (3.15) implies that we can express the vector of country-sector price changes in terms
of output changes and known parameters: ln Pt = P ln Yt.

Let further the hours output elasticity and the intermediates output elasticity adjusted for utilization
and returns-to-scale be Eh and Ex. Combining equation (3.15) with linearized versions of the pro-
duction function (3.10), labor market clearing and the demand for intermediate goods, the influence
matrix is:9

ln Yt =

{
I−

(
Eh + Ex

)
(I + P) +

(
EhΠ̃f + ExΠx

)
P
}−1 (

ln Zt − Eh ln ξt

)
. (3.16)

8See equations (B.8) and (B.9) for the construction of Πx, Πf , Ψx and Ψf .
9See equation (B.11) for the construction of Eh, Ex, and Π̃f .
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Equation (3.16) illustrates that all we need to understand the GDP elasticity to various sector-
country shocks in this quantitative framework are measures of steady state final goods consumption
and production shares, as well as model elasticities. The influence matrix encodes the general
equilibrium response of sectoral output in a country to shocks in any sector-country, taking into
account the full model structure and all direct and indirect links between the countries and sectors.
This is particularly evident in equation (3.15), which pins down the matrix P relating changes in
quantities to changes in prices. The first term contains the response of GDP that arises from output
changes in every country and sector in response to a shock in a sector-country. The second term
contains the relative price changes of final goods and the final term the relative price changes of
intermediate inputs.

Two aspects of the influence matrix are worth noting. The first is a resemblance of (3.16) to the
typical solution to a network model, that writes the equilibrium change in output as a product of
the Leontief inverse and the vector of shocks. Our expression also features a vector of shocks, and
an inverse of a matrix that is more complicated due to the multi-country structure of our model
combined with elastic factor supply and the departure from unitary elasticities of substitution.

Second, the response of output in a static model (fixing Mnjt and Nnjt in each sector) coincides
with the impact response in the fully dynamic DSGE model. Both are given by (3.16). Our analysis
thus integrates the static network propagation literature that follows Acemoglu et al. (2012) and
the dynamic international business cycle literature. We can cleanly separate the instantaneous
propagation analyzed in the former and the delayed responses to shocks emphasized by the latter. In
later periods the response of GDP will depend on the persistence of shocks and the capital and labor
accumulation decisions, which are not encoded in this vector (but can be evaluated numerically).

GDP Change It is straightforward to go from sector-level output changes in (3.16) to GDP
changes. To do that, we need to aggregate the changes of sector-country real value added, as in
(2.2).10 Denote by D the matrix of Domar weights for sector j in country n, PnjYnjPnFn . Also define the
matrix η of sector value-added ratios, ηj .11

The real GDP changes are given by

lnGDPt = ηD ln Yt − (I− η)D(I−Πx)P ln Yt, (3.17)
10Evaluated at base prices, the log-deviation of country n’s real GDP in period t can be expressed as

lnYnt =
∑
j

(
PnjYnj
PnFn

lnYnjt −
∑
m,i

PmiXmi,nj
PnFn

lnXmi,njt

)
.

11See equation (B.12) for the construction of D and η.
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where ln GDPt is the N × 1 vector of log changes of GDP Ynt. The first term in equation (3.17)
captures the changes in quantity which is aggregated with Domar weights. The second term captures
the relative changes between the prices of domestically produced goods and the prices of imported
intermediate goods.

4 Measurement

4.1 Estimating TFP Shocks

Unobserved Factor Utilization: As emphasized by BFK, measuring TFP innovations is difficult
because the intensity with which factors are used in production varies over the business cycle, and
cannot be directly observed by the econometrician. As unobserved factor utilization will respond to
TFP innovations, it is especially important to account for it in estimation, otherwise factor usage
will appear in estimated TFP. BFK develop an approach to control for unobserved factor utilization
which leads to a TFP series in the United States that has very different properties than the Solow
residual. Our approach is similar in spirit.

In the model above, the true factor inputs are Knjt ≡ UnjtMnjt and Lnjt ≡ EnjtHnjtNnjt. The true
capital input is the product of the quantity of capital input (“machines”) Mnjt that can be measured
in the data, and capital utilization Unjt that is not directly observable. Similarly, the true labor
input is the product of the number of workers Nnjt, hours per worker Hnjt, and labor effort Enjt.
While Nnjt and Hnjt can be obtained from existing datasets, Enjt is unobservable.

Log-differencing (3.10), and writing input usage breaking up the observed and the unobserved com-
ponents yields:

d lnYnjt = γj (αjηjd lnMnjt + (1− αj)ηjd ln (HnjtNnjt) + (1− ηj)d lnXnjt)︸ ︷︷ ︸
Observed Inputs

(4.1)

+γj (αjηjd lnUnjt + (1− αj)ηjd lnEnjt) + d lnZnjt︸ ︷︷ ︸
Unobserved Inputs

.

We rely on the theoretical framework to derive an estimable equation that takes into account the
unobserved components of (4.1) and thus allows us to recover estimates of the true TFP d lnZnjt.
The first-order conditions of the profit maximization problem of the firm with the production func-
tion (3.8) imply that the cost shares of the composite labor and capital inputs are (1− αj) ηj and
αjηj respectively. Given a wage Wnjt or a rental rate Rnjt, the firm is indifferent between in-
creasing effort/hours or employees holding other inputs constant, and similarly between utilization
and machines. However, we assumed that the household faces increasing disutility from supplying
more on any individual margin (effort, hours, or utilization of capital), and Nmjt and Mmjt are
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predetermined within a period. The market-clearing wages and rental rates therefore pin down the
equilibrium choices of effort, hours, and utilization in a period. The household’s optimal choices of
unobserved utilization and effort will be proportional to its choice of observed hours (see 3.5 and 3.6).
The household intra-temporal first-order conditions therefore allow us express unobserved effort and
capital utilization as a log-linear function of observed hours:

γj (αjηjd lnUnjt + (1− αj)ηjd lnEnjt) = ζjd lnHnjt, (4.2)

where ζj = γjηj

(
αj

ψh

ψu + (1− αj) ψ
h

ψe

)
.

Plugging these relationships into (4.1) yields the following estimating equation:

d lnYnjt = δ1
j (αjηjd lnMnjt + (1− αj)ηjd ln (HnjtNnjt) + (1− ηj)d lnXnjt) (4.3)

+δ2
j d lnHnjt + δnj + d lnZnjt,

where we also added country×sector fixed effects δnj to allow for country-sector specific trend output
growth rates. The estimation proceeds to regress real output growth on the growth of the composite
observed input bundle and the change in hours per worker. The coefficient δ1

j is clearly an estimate
of returns-to-scale γj . Equation (4.2) provides a structural interpretation for the constant δ2

j = ζj .12

We use a strategy similar to BFK to estimate (4.3). First, input usage will move with TFP shocks
d lnZnjt, and thus the regressors in this equation are correlated with the residual. To overcome this
endogeneity problem, our baseline approach uses two instruments. The first is oil shocks, defined
as the difference between the log oil price and the maximum log oil price in the preceding four
quarters. This oil price shock is either zero, or is positive when this difference is positive, reflecting
the notion that oil prices have an asymmetric effect on output. The annualized oil shock is the
sum over the four quarters of the preceding year. The second instrument is the growth rate in real
government defense spending, lagged by one year.13 Our baseline production function estimation
sample is confined to the G7 countries. This tends to lead to the strongest instruments and most
precisely estimated coefficients. Finally, following BFK, to reduce the number of parameters to be
estimated, we restrict δ2

j to take only three values, according to a broad grouping of sectors: durable

12BFK derive the same estimating equation by assuming instead that firms face an upward-sloping cost schedule for
increasing effort, hours, or utilization holding other factors constant. While our framework is somewhat less general, an
advantage is that we do not have to assume ad-hoc convex cost functions for firm choices. The structural interpretation
of the estimated parameters in our framework differs slightly from BFK, but we can still recover estimates of returns-
to-scale and adjust for unobserved utilization.

13The instruments must be uncorrelated with the residual component of TFP growth. One may worry that in
the presence of within-sector misallocation, an instrument that moves factor inputs will also change the degree of
misallocation, thus violating the exclusion restriction. However, the instruments will change misallocation only when
they affect relative factor inputs across firms. Since our instruments capture quite aggregate shocks, it seems less likely
that they would lead to a large reshuffling across firms within a sector.
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manufacturing, non-durable manufacturing, and all others.

Conditional on these estimates and the log changes in the observed inputs, we obtain the TFP
shocks d lnZnjt as residuals. We use the estimate of ζj in two places, as we need it to construct the
d ln

[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
term:

d ln
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
= d ln

(
M

αjηj
njt N

(1−αj)ηj
njt H

(1−αj)ηj+
ζj
γj

njt X
1−ηj
njt

)
,

where we substituted for unobserved inputs using (4.2).

4.2 Extracting Non-Technology Shocks

Conditional on the productivity shocks measured above, and on the pre-determined changes in
employees and machines Nnjt and Mnjt, the non-technology shocks ξnjt are recovered in such a way
as to match actual value added growth in every country-sector (and therefore actual GDP growth in
every country). Let lnVnjt denote value added in log deviations from steady state:

lnVnjt =
PnjYnj
Vnj

lnYnjt −
∑
m,i

PmiXmi,nj

Vnj
lnXmi,njt.

We have data on the NJ × 1 vector of log changes in real value added d ln Vt in each t. In the
model, using the equilibrium relationships between gross output, price changes, and real input use,
the vector of changes in value added can be written as14

d ln Vt = V d ln Yt. (4.4)

Extending equation (3.16) to include the impacts of the predetermined changes in installed machines
and employment, d ln Mt and d ln Nt, the changes of gross output can be written as:15

d ln Yt =

{
I−
(
Eh + Ex

)
(I+P)+

(
EhΠ̃f + ExΠx

)
P
}−1 (

d ln Zt − Ehd ln ξt + Emd ln Mt + End ln Nt

)
.

Combining the two equations above, the non-technology shocks can be recovered:

d ln ξt = (Eh)−1

{
d ln Zt + Emd ln Mt + End ln Nt

−
(
I−

(
Eh + Ex

)
(I + P) +

(
EhΠ̃f + ExΠx

)
P
)
V−1d ln Vt

}
. (4.5)

14See equation (B.13) for the construction of V.
15See equation (B.14) and (B.15) for the construction of Em and En.
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In other words, the structure of the model world economy and the observed/measured objects can
be used to infer a global vector of non-technology shocks d ln ξt that rationalizes observed growth
rates in real value added in each country-sector. Note that the interdependence between country-
sectors through input linkages implies that the entire global vector d ln ξt must be solved for jointly.
Appendix B.3 describes in greater detail the procedure for extracting the non-technology shocks.

4.3 Data

The data requirements for estimating equation (4.3) is growth of real output and real inputs for a
panel of countries, sectors, and years. The dataset with the broadest coverage of this information is
KLEMS 2009 (O’Mahony and Timmer, 2009).16 This database contains gross output, value added,
labor and capital inputs, as well as output and input deflators. In a limited number of instances,
we supplemented the information available in KLEMS with data from the WIOD Socioeconomic
Accounts, which contains similar variables. After data quality checking and cleaning, we retain a
sample of 30 countries, listed in Appendix Table A1. The database covers all sectors of the economy
at a level slightly more aggregated than the 2-digit ISIC revision 3, yielding, after harmonization, 30
sectors listed in Appendix Table A2. In the best cases we have 28 years of data, 1970-2007, although
the panel is not balanced and many emerging market countries do not appear in the data until the
mid-1990s.

The oil price series is the West Texas Intermediate, obtained from the St. Louis Fed’s FRED
database. We have also alternatively used the Brent Crude oil price, obtained from the same source.
Military expenditure comes from the Stockholm International Peace Research Institute (SIPRI).

The extraction of the non-technology shocks and the quantitative analysis require additional infor-
mation on the input linkages at the country-sector-pair level, as well as on final goods trade. This
information comes from the 2013 WIOD database (Timmer et al., 2015), which contains the global
input-output matrix.

4.4 Empirical Results

TFP Estimation Table 1 reports the results of estimating equation (4.3). The returns to scale
parameters vary from about 0.7 to 0.9 in durable manufacturing, from 0.3 to 1 in non-durable
manufacturing, and from 0.4 to nearly 2 in the quite heterogeneous non-manufacturing sector. Thus,
the estimates show departures from constant returns to scale in a number of industries, consistent
with existing evidence. The coefficient on hours per worker (d lnHnjt) is significantly different from

16This is not the latest vintage of KLEMS, as there is a version released in 2016. Unfortunately, the 2016 version has
a shorter available time series, as the data start in 1995, and also has many fewer countries. A consistent concordance
between the two vintages is challenging without substantial aggregation.
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zero in two out of three industry groups, indicating that adjusting for unobserved utilization is
important in the manufacturing industries.

Appendix A.1 reports a battery of robustness checks and additional results regarding the TFP esti-
mation procedure, including: (i) the complete set of industry-specific production function estimates
within each of these three broad groups; (ii) stability of estimates with respect to country sam-
ple, and to using BFK’s coefficients; (iii) the correlation between our implied utilization series and
survey-based utilization data.

Table 1: Summary of Production Function Parameter Estimates

Industry Group Median Returns to Scale Utilization Adjustment

Durables 0.806 1.420
[0.701,0.895] (0.389)

Non-durable manufacturing 0.753 2.929
[0.291,0.926] (1.771)

Non-durable non-manufacturing 1.244 0.260
[0.451,1.864] (0.643)

Notes: This table reports the range of estimates of γj in the three broad groups of sectors, and the estimates of ζj
along with their standard errors clustered at the country-sector in parentheses.

Non-Technology Shocks Having estimated these production function parameters and TFP shocks,
we simply back out the implied non-technology shocks using our data and equation (4.5). Doing so
requires a small number of parameters in addition to data on the structure of world input and final
goods production and trade. We defer the description of parameter estimation and calibration until
Section 5.2.

Cross-Country Correlations With these estimates in hand, we are ready to examine cross-
country correlations. The estimates of the TFP shocks alone deliver some insights about the direct
effects of these shocks relative to the Solow residual (the traditional measure of TFP). We present
results for two subsamples: the G7 countries and the full sample. The G7 countries have less variation
among them, making patterns easier to detect. In addition, the production function coefficient
estimates are most reliable for the G7 sample, and we use them as the baseline coefficients to be
applied to all other countries, implying that TFP and inputs in other countries are likely measured
with greater error.

In the first instance, we are interested in the proximate drivers of comovement between countries, and
in particular whether aggregate comovement occurs because of correlated TFP or inputs. Appendix
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B.1 shows that GDP growth can be written a sum of two components:

d lnYnt ≈ d lnZnt + d ln Int, (4.6)

where aggregate TFP is denoted by:

d lnZnt =
J∑
j=1

Dnjd lnZnjt, (4.7)

and d ln Int is the log change in the scale-adjusted primary factor inputs (see equation B.4). According
to (4.7), aggregate TFP growth is thus a weighted average of sectoral TFP growth rates, with Dnj

being the “steady-state” Domar weights, proxied by the period average Domar weights.

Table 2 presents the basic summary statistics for the elements of the GDP decomposition in equation
(4.6). While the non-technology shocks do not appear in this decomposition, these results are useful
for highlighting the role of the TFP shocks and comparing them to the Solow residual. The top
panel reports the correlations among the G7 countries. The average correlation of real GDP growth
among these countries is 0.36. The second line summarizes correlations of the TFP shocks. Those
are on average close to zero, if not negative. By contrast, input growth is positively correlated, with
a mean of 0.26.

Appendix B.1 shows that the Solow residual can be written as a sum of the aggregate TFP growth
and the aggregated variable utilization change d lnUnt:

d lnSnt = d lnZnt + d lnUnt, (4.8)

with the expression for d lnUnt provided in (B.6).

Thus, it is an empirical question to what degree correlations in the Solow residual reflect true tech-
nology shock correlation as opposed to endogenous input adjustments. Table 2 shows that the Solow
residual has an average correlation of about 0.09 in this sample of countries. If Solow residual was
taken to be a measure of TFP shocks, we would have concluded that TFP is positively correlated
in this set of countries. As we can see, this conclusion would be misleading. Indeed, the correlation
in the utilization term Unt, which is the difference between the TFP shock d lnZnt and the Solow
residual, accounts for the all of the correlation in the Solow residual, on average. This indicates
that the correlation in the Solow residual is in fact driven by unobserved input utilization and scale
adjustments. The left panel of Figure 1 depicts the kernel densities of the correlations of real GDP,
TFP, and inputs. There is a clear hierarchy, with the real GDP being most correlated, and the TFP
being least correlated and centered on zero.
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Table 2: Correlations Summary Statistics

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)

d lnYnt 0.358 0.337 0.242 0.565
d lnZnt 0.013 -0.002 -0.079 0.152
d ln Int 0.257 0.207 0.074 0.449
d ln ξnt 0.218 0.224 0.060 0.405

d lnSnt 0.085 0.111 -0.022 0.314
d lnUnt 0.135 0.125 -0.018 0.245

All countries (N. obs. = 406)

d lnYnt 0.190 0.231 -0.027 0.437
d lnZnt -0.004 0.007 -0.189 0.214
d ln Int 0.087 0.094 -0.150 0.339
d ln ξnt 0.017 0.039 -0.205 0.240

d lnSnt 0.056 0.084 -0.151 0.303
d lnUnt 0.025 0.038 -0.175 0.237

Notes: This table presents the summary statistics of the correlations in the sample of G7 countries (top panel) and
full sample (bottom panel). Variable definitions and sources are described in detail in the text.

The bottom panel of Table 2 repeats the exercise in the full sample of countries. The basic message
is the same as for the G7 but quantitatively the picture is not as stark and the variation is greater.
It is still the case that d lnZnt has a zero average correlation. It is also still the case that the inputs
d ln Int have greater correlation, and that their correlation is on average about half of the average
real GDP correlation. The Solow residuals are also more correlated than d lnZnt, and part of the
difference is accounted for by the fact that the unobserved inputs are positively correlated. The right
panel of Figure 1 displays the kernel densities of the correlations in the full sample. Appendix Figure
A2 also plots the estimated TFP series against the Solow residual for all the countries in the sample.

This is of course only an accounting decomposition. Factor usage will respond to TFP shocks
at home and abroad. Since the growth in Int has not been cleaned of the impact of technology
shocks, it cannot be attributed exclusively by non-technology shocks. We next turn to assessing the
unconditional Domar-weighted correlation of non-technology shocks across countries as we did for
TFP shocks. Then, in Section 5 we use our full model and the decompositions outlined in Section 2
to perform a number of exercises aimed at understanding the full role of these shocks in international
comovement.

23



Patterns in Non-Technology Shocks Across Countries: Unlike the decomposition of GDP
growth into TFP and inputs in (4.6), there is no decomposition that isolates the domestic non-
technology shocks d ln ξnjt+1 as an additive component in the GDP growth rate. Nonetheless, to
provide a simple illustration of the correlations of d ln ξnjt across countries, we construct a Domar-
weighted non-technology shock, to parallel the Domar-weighted TFP shock in (4.7):

d ln ξnt =

J∑
j=1

Dnjd ln ξnjt. (4.9)

Table 2 reports the correlations in d ln ξnt among the G7 and in the full sample. The non-technology
shocks are positively correlated across countries, unlike TFP. The correlation of non-technology
shocks is around 0.2 on average in the G7 countries, which is well short of the observed GDP
correlation, but substantially higher than the zero average TFP correlation in this set of countries.
In the full sample, aggregated non-technology shocks have about a 0.02-0.04 correlation on average,
which is not very different from the TFP correlation. This suggests that, when considering the G7
group of countries alone, non-technology shocks have a better chance of producing positive output
correlations observed in the data. Appendix Figure A3 plots the d ln ξnt’s against our estimated TFP
shocks for all countries. Appendix Table A8 shows that the pattern of d ln ξnt correlations remains
very similar when using alternative calibrations.

Figure 1: Correlations: Kernel Densities
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Notes: This figure displays the kernel densities of real GDP growth, the utilization-adjusted TFP, and input corre-
lations in the sample of G7 countries (left panel) and full sample (right panel). Variable definitions and sources are
described in detail in the text.
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5 Quantitative Assessment

Shocks in our model can affect aggregate outcomes via a contemporaneous impact – their correlation
and the intratemporal transmission through the network – as well as a dynamic impact driven by
the response of capital accumulation and intertemporal labor adjustment to the shocks.

To understand and separate the mechanisms in the model that generate comovement, it is useful to
first consider a static version of the model in the spirit of the network propagation literature following
Acemoglu et al. (2012), in which both capital accumulation within a sector and sectoral employment
adjustments are not permitted. This exercise emphasizes the role of the input-output structure of
the model in amplifying or dampening the underlying contemporaneous correlations of the sectoral
shocks.

Importantly, in our framework the contemporaneous response of the world economy to shocks is
characterized by the global influence matrix and coincides with the impact response in the dynamic
model. In addition, as emphasized in Section 2 the static and the dynamic components of the total
covariance are simply additive. Thus the static and dynamic comovement are separable, and we
begin by considering the static component.

5.1 Static Counterfactuals

The static counterfactual simulates output growth rates in a setting where machines Mnjt and em-
ployees Nnjt are held constant. The first-order analytical solution expressed as a global influence
matrix is in Section 3.1. For the static model we can also obtain the exact solution using the hat
algebra approach of Dekle, Eaton, and Kortum (2008). The details of the exact solution to the
model are in Appendix B.4. The appendix also provides a comparison between the GDP growth
rates implied by the first-order approach and the exact GDP growth rates. It turns out that in
our setting, the exact and first-order approximation solutions are very close to each other, with a
correlation between the two GDP growth rates of 0.999. Below, we will present the cross-country
GDP correlations coming from the first-order analytical solution, as it permits the decomposition of
the overall comovement into the additive shock correlation and transmission terms.

5.2 Calibration

In implementing this static approach, we only need to take a stand on the value of a small number of
parameters, and use our data to provide the required quantities. Table 3 summarizes the parameter
assumptions for the static model and data sources. Appendix A.2 undertakes the estimation of the
substitution elasticities in final and intermediate use. Based on these estimation results, the final
consumption Armington elasticity ρ is set to either 2.75 or 1, and the intermediate elasticity ε to
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Table 3: Parameter Values

Param. Value Source Related to

ρ 2.75 or 1 Our estimates final substitution elasticity
ε 1 Our estimates intermediate substitution elasticity
ψe, ψh 4 Chetty et al. (2013) Frisch elasticity
ψu 4 or 1.01 Our estimates capital supply elasticity
αj , βj KLEMS labor and capital shares
γj Our estimates returns to scale
πfmnjt WIOD final use trade shares
πxmi,njt WIOD intermediate use trade shares
ωnj WIOD final consumption shares

Notes: This table summarizes the parameters and data targets used in the quantitative model, and their sources.

1. Two parameters ψe and ψh govern the elasticity of different margins of labor supply (hours and
effort). As we lack evidence that the elasticity with respect to hours should differ from that for
effort, we set them both to 4, implying the Frisch labor supply elasticity is 0.5 as advocated by
Chetty et al. (2013). This value is conservative relative to the elasticity of 2 common in the business
cycle literature. Raising the Frisch elasticity leads to greater transmission of shocks and higher GDP
correlations in our model. We have less guidance to set the capital supply parameter ψu. Our TFP
estimation procedure coupled with our choices of ψe and ψh provides an overidentification restriction
for ψu, evident in (4.2). However, the range of values that satisfy this restriction is large, and includes
values that imply very elastic and inelastic capital supply. We therefore choose a baseline value of
4, implying a relatively inelastic capital supply, but also assess the performance of the model for a
value of 1.01 – a highly elastic capital supply.

All other parameters in the static model have close counterparts in basic data and thus we compute
them directly. Capital shares in total output αj come from KLEMS, and are averaged in each sector
across countries and time. The scale parameters γj come from our own production function estimates
reported in Appendix Table A3. We initialize both the static and dynamic models in the same steady
state. Steady state input shares πxmi,nj and final consumption shares πfmnj are computed from WIOD
as time averages.

5.3 Impulse Responses

Prior to simulating the model with the observed shocks, we “test drive” the propagation mechanism
by simulating some simple hypothetical shocks:
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1. a 1% U.S. shock in all sectors,

2. a 1% rest-of-the-world shock in all sectors from the perspective of each country, and,

3. a symmetric shock in each sector in every country of the world.

The rest-of-the-world exercise assumes that the country in question is not shocked, but all other
possible countries and sectors are, and thus has to be conducted country by country. In each
exercise, we simulate a hypothetical technology shock. Examining the expression for the change in
world output due to shocks in (3.16) reveals that up to a scaling parameter the technology and non-
technology shocks do not have differential transmission properties in this model. Thus to conserve
space we only report the impulse responses to TFP shocks.

Figure 2 displays the change in real GDP in every other country in the world following a 1% U.S.
shock in each sector. The white bars depict the GDP responses under ρ = 2.75, while the dark bars
depict the response under ρ = 1.

Figure 2: Impulse Responses to a US 1% Shock
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Notes: This figure displays the change in log real GDP of every other country in the sample when the United States
experiences a productivity shock of 0.01 in every sector.
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The results show that the observed trade linkages do result in transmission. Smaller economies with
large trade linkages to the U.S., such as Canada, are the most strongly affected by the U.S. shocks.
Under the low elasticity, the mean response of foreign GDP is 0.21%, and the maximum response –
Canada – is about 0.35%. On the other hand, the final substitution elasticity matters a great deal
for the size of the effects: the response of foreign GDP to the US shocks is about twice as high for
ρ = 1 than for ρ = 2.75.

Next, we simulate the real GDP responses of each country n in the sample when all other countries
(excluding n) experience a 1% technology shock. The exercise answers the question, if there is a
1% world shock outside of the country, how much of that shock will manifest itself in the country’s
GDP? Figure 3 displays the results. In response to a 1% world TFP shock, under the low elasticity of
substitution the mean country’s GDP increases by 0.85%, with the impact ranging from around 0.3%
in the U.S. and Japan to 1.1-1.4% in Latvia and Lithuania. Smaller countries are not surprisingly
more affected by shocks in their trade partners. The magnitude of transmission is uniformly lower
with the higher elasticity. In this case, the mean impact is about 0.4% for the 1% technology shock.
All in all, these results suggest that world shocks have a significant impact on most countries.

Figure 4 illustrates the results of our third impulse response exercise, a 1% productivity shock to
every country and sector in the world, under ρ = 2.75. Here, we are most interested in the share of
the total GDP change that comes from the shocks to the country’s own productivity, and how much
comes from foreign shocks. Thus, we use the linear approximation to a country’s GDP growth (2.4),
and separate the overall impact into the own term Dn and the rest. The figure highlights that for all
countries, shocks to domestic sectors matter much more for GDP growth than foreign sector shocks.
The mean and the median share of the foreign terms in the total GDP change is 11%. The impact
is heterogeneous across countries, with the fraction of GDP change due to foreign impact ranging
from 3 to 5% of the total for Japan, Spain, and the U.S., to nearly 17% of the total for Lithuania
and Estonia.

5.4 GDP Correlations in the Model

We next simulate the full static model by feeding in the estimated shocks. Tables 4 and 5 report
correlations in our model simulated with both technology and non-technology shocks, as well as
counterfactual economies featuring only technology or non-technology shocks, under ρ = 2.75 and
ρ = 1, respectively. Trade is balanced in every period.17 The first two lines report the summary
statistics for the real GDP correlations in the data and in the baseline model in which both shocks

17Appendix Table A15 reports the fit of the model and counterfactual exercises where deficits are allowed to evolve
as in the data.
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Figure 3: Impulse Responses to Rest of the World 1% Shocks
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Notes: This figure displays the change in log real GDP of every country in the sample when the rest of the world
excluding the country experiences a TFP shock of 0.01 in every sector.

are as measured in the data. Our static model generates mean correlations that are about two-thirds
of what is observed in the data, for both the G7 and the full sample.

Next, we simulate the model under only non-technology and only TFP shocks. It is immediately
apparent that the non-technology shocks are responsible for much of the comovement in the model.
For the G7 group, the model with only non-technology shocks generates 75% of the average correla-
tions in the data, more than that implied by the model with both shocks. By contrast, the model
with only technology shocks generates 28% of the comovement on average. The results for all coun-
tries are similar in terms of relative magnitudes, though even non-technology shocks account for less
comovement: technology shocks generate a negligible fraction of the comovement of the full model at
the mean, while the non-technology shocks generate about 15% of the comovement. These relative
magnitudes are not sensitive to the two alternative values of ρ.18 Appendix Table A10 reports results

18As we emphasized throughout, in the static framework technology and non-technology shocks can differ in relative
importance only due to differences in their correlations. For the non-G7 countries, the non-technology shocks are less
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Figure 4: Impulse Responses to a 1% Shock in Every Sector in Every Country
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Notes: This figure displays the change in log real GDP of every country in the sample, decomposed into a direct
effect and a rest of world effect, when all sectors in every country experience a productivity shock of 0.01.

under a higher Frisch elasticity of 2. Predictably, the correlations generated by the model rise when
the Frisch elasticity is higher, but the relative contributions of the two types of shocks do not change.

To assess the importance of correlated shocks relative to transmission in the model with the estimated
shocks, we decompose bilateral correlations along the lines of equation (2.6), rewritten in correlations.
That equation combined with the first-order solution to the model in (3.17) produces a breakdown
of the overall comovement into additive shock correlation and transmission terms. Table 6 reports
the results. For the G7 countries, the correlation of shocks is responsible for around two-thirds of the
model correlations in the simulation with both shocks. Nonetheless, the bilateral and multilateral
transmission terms have a non-negligible contribution to the overall correlation, accounting for the
remaining one-third. The share accounted for by correlated shocks is similar in the full sample.

Note that the findings regarding the ability of TFP shocks to generate correlations, and the relative

correlated than for the G7 countries. So their smaller contribution to cross-country correlations is not surprising.
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Table 4: Model Fit and Counterfactuals: Correlations of d lnYnt, ρ = 2.75, ψu = 4

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Model 0.236 0.363 -0.030 0.567

Non-Technology Shocks Only 0.299 0.348 0.122 0.453
Technology Shocks Only 0.111 0.163 -0.088 0.322

All countries (N. obs. = 406)

Data 0.190 0.231 -0.027 0.437
Model 0.124 0.130 -0.104 0.412

Non-Technology Shocks Only 0.029 0.014 -0.188 0.272
Technology Shocks Only 0.005 0.023 -0.211 0.222

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different shocks. Variable definitions and
sources are described in detail in the text.

importance of transmission vs. correlated shocks do not hinge on our utilization-adjusted series.
Appendix C simulates the model with Solow residuals instead of the utilization-adjusted TFP shocks,
and shows that the main conclusions are unchanged if we use the Solow residuals instead of our
estimates.

5.5 The Role of the Input Network

Another way to quantify the role of transmission in generating observed comovement is to compare
the correlations in the baseline model to correlations that would obtain in an autarky counterfactual.
As emphasized in Section 2, the difference between the autarky and trade influence vectors sAUTnj

and snnj is the key input into this comparison. The assumptions put on the counterfactual autarky
input-output matrix will determine sAUTnj . Theory does not offer clear guidance on the autarky
input-output structure. We only observe the global input-output matrix under the current levels
of trade costs, which in our analysis is taken as given in steady state. A natural way to construct
autarky would be to set the trade costs to infinity. However, since the baseline production function
is Cobb-Douglas in the factors and all materials inputs, sending trade costs to infinity would result
in zero output in all country-sectors that source foreign intermediates directly or indirectly.
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Table 5: Model Fit and Counterfactuals: Correlations of d lnYnt, ρ = 1, ψu = 4

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Model 0.246 0.341 0.020 0.564

Non-Technology Shocks Only 0.322 0.369 0.148 0.469
Technology Shocks Only 0.126 0.169 -0.091 0.362

All countries (N. obs. = 406)

Data 0.190 0.231 -0.027 0.437
Model 0.119 0.118 -0.128 0.402

Non-Technology Shocks Only 0.045 0.046 -0.186 0.294
Technology Shocks Only 0.016 0.019 -0.220 0.235

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different shocks. Variable definitions and
sources are described in detail in the text.

To better illustrate the role of various input linkages in comovement, we report results of 3 autarky
counterfactuals. Appendix B.5 shows that these autarky counterfactuals can be thought of as limiting
cases as trade costs go to infinity, and elasticities differ from 1 in different ways.

The first is a value added-only model: ηAUT1
j = 1 ∀j. In this model, there are no input-output

linkages, domestic or international.

The second is a model in which the domestic input coefficients are unchanged as a share of gross
output, whereas the sum total of the observed foreign input coefficients is reapportioned to value
added:

πx,AUT2
ni,nj = πxni,nj (5.1)

ηAUT2
nj = ηj +

∑
i;m 6=n

πxmi,nj . (5.2)

In other words, the second autarky counterfactual assumes that in each sector and country, the
intermediates that in the data are imported will be replaced by value added.19 This counterfactual
keeps the propagation of shocks through the domestic linkages unchanged.

19The input spending shares πxmi,nj,t are not parameters when the aggregation is CES. However, the quantitative
implementation uses a unitary elasticity, and thus the πxmi,nj,t can be treated as parameters with no ambiguity.
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Table 6: Correlated Shocks vs. Transmission Decomposition, ρ = 2.75

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Baseline: 0.236 0.363 -0.030 0.567

Decomposition:
Shock Correlation 0.158 0.269 -0.159 0.482
Bilateral Transmission 0.027 0.015 0.014 0.026
Multilateral Transmission 0.051 0.035 0.003 0.084

All countries (N. obs. = 406)

Baseline: 0.124 0.130 -0.104 0.412

Decomposition:
Shock Correlation 0.078 0.083 -0.136 0.347
Bilateral Transmission 0.009 0.004 0.002 0.010
Multilateral Transmission 0.037 0.029 0.008 0.065

Notes: This table presents the decomposition of the GDP correlations generated by the model into the shock
correlation, the direct transmission, and the multilateral transmission terms as in equation (2.6).

Finally, the third autarky counterfactual reassigns foreign input coefficients to the domestic inputs,
while keeping the value added share of gross output the same as in the baseline:

πx,AUT3
ni,nj = πxni,nj +

∑
m 6=n

πxmi,nj (5.3)

ηAUT3
j = ηj . (5.4)

As an example, suppose that the US Apparel sector spent 10 cents on US Textile inputs and 5 cents
on Chinese Textile inputs per dollar of Apparel output, the remaining 85 cents being accounted for
by value added. The second autarky counterfactual assumes that this sector continues to spend
10 cents on US Textile inputs, while its value added rises to 90 cents per dollar of output. The
third autarky counterfactual assumes instead that value added continues to be 85 cents per dollar
of gross output, but now the sector spends 15 cents on US Textile inputs. The third autarky
counterfactual thus raises the domestic input coefficients for each sector by the amount of lost foreign
input coefficients. As a result, it increases the scope for propagation of domestic shocks even as it
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Table 7: Autarky Counterfactuals: Correlations of d lnYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

Data 0.358 0.337 0.242 0.565
Baseline 0.236 0.363 -0.030 0.567

Autarky Models:

AUT1: VA Only 0.382 0.361 0.273 0.454
AUT2: Same Dom. Links 0.316 0.316 0.065 0.518
AUT3: Increased Dom. Links 0.195 0.307 -0.112 0.488

All countries (N. obs. = 406)

Mean Median 25th pctile 75th pctile

Data 0.190 0.231 -0.027 0.437
Baseline 0.124 0.130 -0.104 0.412

Autarky Models:

AUT1: VA Only 0.017 0.028 -0.203 0.250
AUT2: Same Dom. Links 0.023 0.022 -0.230 0.257
AUT3: Increased Dom. Links 0.058 0.078 -0.189 0.328

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different assumptions on trade linkages.
Variable definitions and sources are described in detail in the text.

rules out propagation of shocks from abroad. By construction, all autarky counterfactuals assume
that there is no international input trade: πx,AUT1

mi,nj = πx,AUT2
mi,nj = πx,AUT3

mi,nj = 0 ∀m 6= n.

Using the input and final consumption shares implied by the three autarky counterfactuals, we can
apply the first-order analytical influence vector from Section 3 to compute GDP growth rates in all
countries and the resulting GDP correlations. The changes in GDP comovement between autarky
and trade will depend on how these influence vectors differ across models, as emphasized by equation
(2.7).

Tables 7-8 report the GDP correlations in the three autarky counterfactuals. The row labeled “VA
Only” summarizes the correlations in the AUT1 model, with no domestic input linkages. In the G7
sample the autarky value-added-only model produces higher mean GDP correlations than the model
with the full international input linkages. This model generates around 0.38 mean correlations in the
G7 countries, compared to the 0.24 mean in the baseline with the high ρ. The lines labeled “Same
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Table 8: Autarky Counterfactuals: Correlations of d lnYnt, ρ = 1

Mean Median 25th pctile 75th pctile

Data 0.358 0.337 0.242 0.565
Model 0.246 0.341 0.020 0.564

Autarky Models:

AUT1: VA Only 0.320 0.328 0.281 0.436
AUT2: Same Dom. Links 0.228 0.244 0.043 0.470
AUT3: Increased Dom. Links 0.080 0.199 -0.301 0.343

All countries (N. obs. = 406)

Mean Median 25th pctile 75th pctile

Data 0.190 0.231 -0.027 0.437
Model 0.119 0.118 -0.128 0.402

Autarky Models:

AUT1: VA Only 0.038 0.063 -0.190 0.269
AUT2: Same Dom. Links 0.037 0.029 -0.220 0.302
AUT3: Increased Dom. Links 0.036 0.036 -0.216 0.324

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different assumption on trade linkages.
Variable definitions and sources are described in detail in the text.

Dom. Links” report the correlations under the AUT2 autarky counterfactuals. These correlations fall
relative to the AUT1 scenario, but do not fall all the way to the baseline means for the G7. Finally,
the AUT3 counterfactuals are reported under “Increased Dom. Links.” This scenario generates
averages that are lower than in the baseline with trade in the G7. This pattern holds for both the
high and low ρ. Outside of the G7 sample, the comparison of the autarky correlations does not reveal
a clear ranking, and the autarky correlations are all lower than the correlation under trade.

Equation (2.7) helps understand these results. The change in GDP comovement between autarky and
trade is actually a sum of two terms: the re-weighting of sectors towards or away from those with more
correlated shocks (∆Shock Correlationmn), and the international transmission terms. The simulated
impulse responses above suggest that the international transmission should generally be positive.
Thus, to observe the lower average correlation under trade, it must be that the change in the shock
correlation term is negative. Figure 5 illustrates this by plotting the average ∆Shock Correlationmn
and the transmission terms for the G7. There is non-negligible positive transmission of shocks in the
model with trade, but it is more than offset by the negative ∆Shock Correlationmn terms.
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Figure 5: Decomposing Changes in Correlations: Trade vs. Autarky
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Notes: This figure illustrates how the pattern of correlations changes between the full model and the autarky value
added only model for the G7. The gray bars illustrate the average bilateral and multilateral transmission terms and
the dark bars illustrate the decreasing direct correlation effect.

The ∆Shock Correlationmn term will be negative when the sectors with less correlated primitive
shocks have a higher influence in the trade equilibrium than in autarky. Figure 6 plots the average
changes in the domestic elements influence vectors snnj in the G7 sample, by sector. The figure
reveals which sectors receive a higher influence in the full baseline model, compared to each of the
autarky models. It is clear that the largest changes are for the non-tradeable sectors (Machinery and
Equipment Rentals and Other Business Services; and Real Estate Activities). These sectors have
a much larger influence in the trade equilibrium compared to the value-added only model (AUT1).
By contrast, the influence vectors change much less between the trade model and the autarky model
with increased domestic linkages (AUT3). The intermediate model (AUT2) is in-between those two
extremes.

The reason that these services sectors have a much higher influence in the model with IO linkages
relative to the value added-only model is that these sectors are important input suppliers to other
sectors. The left panel of Figure 7 reports the scatterplot of the change in the influence of a sector
against the intensity with which other sectors use it as inputs in the data. The correlation between
the two is 0.75: sectors used as inputs experience an increase in influence as we move from a value
added-only model to the full IO model.

At the same time, shocks in these sectors are on average less correlated with the foreign shocks. The
right panel in Figure 7 presents the local polynomial fit between the two elements the ∆Shock Correlationmn:
the shift in the combined influence of each sector pair snnjsmmi − sAUTnj sAUTmi and the correlation
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Figure 6: Average Changes in the Influence Vectors: Trade vs. Autarky, ρ = 2.75
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Notes: This figure displays the average change in the direct influence vectors between the baseline model and each
of the autarky models.

between the combined shocks in that pair, along with a 95% confidence intervals. The negative
relationship is evident, as expected.

6 Dynamic Responses

The preceding section explored an environment in which machines Mnjt and employment Nnjt are
kept constant. In that setting, the model is an international extension of the canonical static network
propagation model. We could solve analytically for the global influence matrix, and study how output
across countries and sectors responds to contemporaneous shocks. By construction, past shocks had
no effect on current output correlations. In this section, we allow households to adjust machines
and employment endogenously as in Section 3. Consequently, a shock to sector j in country n can
have persistent effects on other countries and sectors, and the properties of output correlations also
depend on the dynamic propagation of shocks over time and across regions.

To examine the dynamic responses of the model and how it affects the output correlation, we proceed
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Figure 7: Changes in the Influence Vectors, Intensity of Use as an Input, and Shock Correlation
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Intensity of Use as Input Change in Sectoral Influence vs. Shock Correlation

Notes: This figure displays the change in the influence vectors against the intensity with which a sector is used as
an intermediate input (left panel), and the correlation of shocks between pairs of home and foreign sectors with their
change in influence from value-added only autarky to trade (right panel). The line through the data in the left panel
is the OLS fit. The right panel displays the fit from a local polynomial regression, with 95% confidence intervals.

by solving the log-linearized model. In the linearized model, the taste parameters ϑmnj and µmi,nj
and the trade cost τmni affect the dynamics only via the the final use and the intermediate use trade
shares. Once we match the trade shares as in the data, there is no need to pin down the trade costs
and taste parameters separately. The dynamic model requires a small set of additional parameters
relative to the static model. We adopt values standard in the business cycle literature. The model
period is a year; we set the discount rate to β = 0.96. The period utility is Ψ(·) = log(·), and the
depreciation rate is δj = 0.10. We set ψn = ψh = 4 as in the baseline specification, and vary the
value of ψn. For the elasticity of substitution, we employ the baseline specification as in the static
model, that is, ρ = 2.75 and ε = 1.

The most demanding task in the calibration is to choose shock processes for different countries and
sectors, as these shocks are correlated with each other. The perceived shock processes matter for
the intertemporal decisions of households. We estimate shock processes from the identified shocks
recovered above. For non-G7 countries, the panel is too short to obtain reliable estimates of the
shock processes. Therefore in this section we narrow the focus to the G7 countries. We assume
that the country-sector technology and non-technology shocks follow a vector autoregressive process.
However, due to the large number of countries and sectors, it is not feasible to estimate the fully
unrestricted VAR. Thus, we impose a parsimonious structure on the shock process. Log technology
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and non-technology shocks are assumed to follow:

lnZnjt =ρznj lnZnjt−1 + ζzn1 (m = n, k 6= j) lnZmkt−1 + θznjt, (6.1)

ln ξnjt =ρξnj ln ξnjt−1 + ζξn1 (m = n, k 6= j) ln ξmkt−1 + θξnjt. (6.2)

That is, each sector’s shock depends on its own lagged value, and lagged spillover terms from other
sectors in its country as well as its own innovation.20 We also allow the vector of innovations across
countries and sectors and between the two types of shocks to be correlated, θt ∼ N (0,Σ), that is,
there is a full covariance matrix. The residuals in the estimating equations (6.1) and (6.2) are used to
construct this covariance matrix. Further details on the estimation and the results are in Appendix
A.3.

Table 9: GDP Growth Correlations in the Dynamic Model

Mean Median 25th pctile 75th pctile

Data 0.358 0.337 0.242 0.565

ψn = 4

Model with both shocks 0.250 0.438 -0.057 0.526

Technology-shock only 0.088 0.144 -0.154 0.292

Non-technology-shock only 0.320 0.353 0.133 0.430

ψn = 2

Model with both shocks 0.288 0.434 -0.048 0.535

Technology-shock only 0.083 0.161 -0.177 0.280

Non-technology-shock only 0.347 0.353 0.228 0.460

ψn = 20

Model with both shocks 0.231 0.420 -0.054 0.522

Technology-shock only 0.091 0.133 -0.134 0.303

Non-technology-shock only 0.295 0.331 0.092 0.415

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries
in various calibrations of the dynamic model and under the different shocks. Variable definitions and sources are
described in detail in the text.

20We also experimented with including within-sector spillover terms and dependence on other past variables, but it
turns out that most of these terms are not significant.
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Table 9 displays the results of the dynamic models. In the baseline specification with ψn = 4, the
output growth correlations are similar to the static model in Table 4. When ψn = 20, employment
moves much less, and capital is the main input factor responsible for dynamic transmission. When
ψn = 2, the employment is much more responsive. Though the correlations become larger when the
employment is more responsive, they remain similar to the static model overall.

The results in Table 9 shows that the dynamic model does not substantially increase the GDP growth
correlations relative to the static model. Recall from Section 2 that the GDP growth rate can be
expressed as a function of current and past shocks via the global influence vector

d lnYnt ≈
∞∑
k=0

∑
m

∑
i

smni,kθmi,t−k.

To assess the importance of the dynamic propagation of shocks in determining the comovements, we
implement the following correlation decomposition:

%(d lnYnt, d lnYmt) =
∞∑
k=0

ωnm,k %nm,k, (6.3)

where %nm,k is the correlation between components sn,kθt−k and sm,kθt−k and ωnm,k is its corre-
sponding weight

%nm,k =
sn,kΣs

′
m,k√

sn,kΣs
′
n,k

√
sm,kΣs

′
m,k

with ωnm,k =

√
sn,kΣs

′
n,k

√
sm,kΣs

′
m,k√∑∞

i=0 sn,iΣs
′
n,i

√∑∞
i=0 sm,iΣs

′
m,i

.

It turns out that while the correlations across k are quite different from each other, the k = 0

component is dominant. Figure 8 shows the average %nm,kωnm,0 across country pairs. The k = 0

component, which is the impact effect, accounts for over 80% of total correlation, which explains
why adding dynamics does not significantly raise the GDP correlations. This is mainly due to the
fact that the response to a country’s own shock on impact dominates the response to other countries’
shocks. To illustrate this pattern, Figure 9 compares the response of US output to its own shock
and that to shocks to the rest of the world. Both the shape and the magnitude of the responses
are different. The response to its own shock is high on impact, and gradually dies out. In contrast,
the response to other countries’ shocks peaks after over twenty periods, but at most horizons the
magnitude of the US response to its own shock is much larger.

As hinted above, even though the dynamic model only modestly increases output growth correlation,
it does not imply that there is no endogenous propagation over time. We now revisit the impulse
response exercise in Section 5.3. The left panel of Figure 10 displays the response of other countries
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Figure 9: IRF of US to Technology Shock

Notes: This figure displays the impulse responses of
US TFP following a 1% US TFP shock, and following
a 1% TFP shock in the rest of the world excluding the
US.

to a 1% US productivity shock. Similar to the static model, Canada experiences the largest response
as it has the largest trade linkages to the US. Note that the responses of all the countries are
quite persistent over time. The hump-shaped IRF indicates that there is nontrivial endogenous
propagation. Meanwhile, all the countries co-move quite closely in response to the US shock. The
right panel of Figure 10 displays the response to a hypothetical rest-of-the-world shock in all sectors
from the perspective of each country. Again, we observe significant persistence. Similar to the static
model, the responses are heterogeneous across countries. Japan, US, and Italy respond little, while
Canada and UK are quite sensitive to foreign global shocks.

We conclude this section by looking at the decomposition of the growth correlation into shock corre-
lation, bilateral transmission, and multilateral transmission terms in the dynamic model. Note that
in the static model, we can use the unconditional covariance matrix of the shocks to compute the
decomposition, which is no longer possible in the dynamic model as the impact of the shocks are cor-
related over time. We proceed by computing the theoretical decomposition based on the estimated
processes in (6.1) and (6.2). Table 10 shows that around 70% of the overall comovement is due to
the shock correlation, and 30% is due to transmission. These proportions are quite similar to those
found the static model.
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Figure 10: Impulse Responses to US and Rest of the World Shocks
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Notes: This figure displays the impulse responses of log real GDP of each G7 country following a 1% US TFP shock
(left panel), and following a 1% TFP shock in the rest of the world excluding the country.

Table 10: GDP Growth Correlations Decomposition, Dynamic
Model

Mean Median 25th pctile 75th pctile

Total Correlation 0.272 0.104 -0.125 0.749

Decomposition

Shock Correlation 0.192 0.051 -0.243 0.612

Bilateral Transmission 0.021 0.009 0.003 0.026

Multilateral Transmission 0.059 0.072 -0.002 0.103

Notes: This table presents the decomposition of the GDP correlations generated by the model into the shock
correlation, the direct transmission, and the multilateral transmission terms in the dynamic model.

7 Conclusion

We set out to provide a comprehensive account of international comovement in real GDP. Using a
simple accounting framework, we decomposed the GDP covariance into additive components rep-
resenting correlated shocks and cross-border transmission. The relative importance of these two
terms is determined jointly by the correlations of the primitive shocks and the strength of domestic
and international input-output linkages. The accounting framework also clarifies the role of dy-
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namic propagation: the total GDP covariance is the sum of the covariance due to the instantaneous
responses to shock innovations, and dynamic terms that capture the lagged responses to shocks.

We measured two types of shocks in the data for a large sample of countries and sectors: utilization-
adjusted TFP and a reduced-form non-technology shock that manifests itself as a sector-specific shift
in factor supply. We then used the data on the world input-output linkages to discipline sectoral
influence and cross-border transmission.

Our main findings are fourfold. First, non-technology shocks contribute more to international co-
movement than TFP shocks, because they are positively correlated, whereas TFP shocks are on
average uncorrelated across countries. Second, most of the observed GDP comovement is accounted
for by correlated shocks. Transmission of shocks has an economically meaningful, but smaller role
in comovement. Third, autarky correlations can in some cases be higher than trade correlations.
This happens when trade opening increases the domestic influence of sectors whose primitive shocks
are relatively less correlated. And finally, the bulk of the observed overall correlation is due to the
instantaneous response of the economy to shocks, rather than dynamic propagation of past shocks.

43



References

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2012.
“The Network Origins of Aggregate Fluctuations.” Econometrica 80 (5):1977–2016.

Adao, Rodrigo, Costas Arkolakis, and Federico Esposito. 2017. “Trade, Agglomeration, and
Labor Markets: Theory and Evidence.” Mimeo, University of Chicago Booth and Yale
University and Tufts University.

Ambler, Steve, Emanuela Cardia, and Christian Zimmermann. 2004. “International business
cycles: What are the facts?” Journal of Monetary Economics 51 (2):257–276.

Angeletos, George-Marios, Fabrice Collard, and Harris Dellas. 2018. “Quantifying Confidence.”
Econometrica 86 (5):1689–1726.

Angeletos, George-Marios and Jennifer La’O. 2013. “Sentiments.” Econometrica 81 (2):739–
779.

Atalay, Enghin. 2017. “How Important Are Sectoral Shocks?” American Economic Journal:
Macroeconomics 9 (4):254–280.

Backus, David K, Patrick J Kehoe, and Finn E Kydland. 1992. “International Real Business
Cycles.” Journal of Political Economy 100 (4):745–75.

Baqaee, David Rezza. 2018. “Cascading Failures in Production Networks.” Econometrica
86 (5):1819–1838.

Baqaee, David Rezza and Emmanuel Farhi. 2018. “Macroeconomics with heterogeneous agents
and input-output networks.” Tech. rep., National Bureau of Economic Research.

Barrot, Jean-Noël and Julien Sauvagnat. 2016. “Input Specificity and the Propagation of Id-
iosyncratic Shocks in Production Networks.” Quarterly Journal of Economics 131 (3):1543–
1592.

Bartelme, Dominick, Arnaud Costinot, Dave Donaldson, and Andres Rodriguez-Clare. 2018.
“External Economies of Scale and Industrial Policy: A View from Trade.” Mimeo, University
of Michigan, MIT, and UC Berkeley.

Basu, Susanto, John G. Fernald, and Miles S. Kimball. 2006. “Are Technology Improvements
Contractionary?” American Economic Review 96 (5):1418–1448.

Beaudry, Paul and Franck Portier. 2006. “Stock Prices, News, and Economic Fluctuations.”
American Economic Review 96 (4):1293–1307.

44



Bems, Rudolfs, Robert C Johnson, and Kei-Mu Yi. 2010. “Demand Spillovers and the Collapse
of Trade in the Global Recession.” IMF Economic Review 58 (2):295–326.

Blanchard, Olivier Jean and Danny Quah. 1989. “The Dynamic Effects of Aggregate Demand
and Supply Disturbances.” American Economic Review 79 (4):655–73.

Boehm, Christoph and Nitya Pandalai-Nayar. 2019. “Convex Supply Curves.” Mimeo, UT
Austin.

Boehm, Christoph E., Aaron Flaaen, and Nitya Pandalai-Nayar. 2019. “Input Linkages and
the Transmission of Shocks: Firm-Level Evidence from the 2011 TÅŊhoku Earthquake.”
The Review of Economics and Statistics 101 (1):60–75.

Burnside, Craig, Martin Eichenbaum, and Sergio Rebelo. 1993. “Labor Hoarding and the
Business Cycle.” Journal of Political Economy 101 (2):245–273.

Canova, Fabio. 2005. “The transmission of US shocks to Latin America.” Journal of Applied
Econometrics 20 (2):229–251.

Carvalho, Vasco M. 2010. “Aggregate Fluctuations and the Network Structure of Intersectoral
Trade.” Mimeo, CREi and Universitat Pompeu Fabra.

Carvalho, Vasco M., Makoto Nirei, Yukiko U. Saito, and Alireza Tahbaz-Salehi. 2016. “Supply
Chain Disruptions: Evidence from the Great East Japan Earthquake.” Mimeo, University of
Cambridge, Policy Research Institute, Ministry of Finance of Japan, RIETI, and Columbia
GSB.

Chamberlain, Gary. 1987. “Asymptotic efficiency in estimation with conditional moment
restrictions.” Journal of Econometrics 34 (3):305–334.

Chari, V. V., Patrick J. Kehoe, and Ellen R. McGrattan. 2007. “Business Cycle Accounting.”
Econometrica 75 (3):781–836.

Christiano, Lawrence J., Roberto Motto, and Massimo Rostagno. 2014. “Risk Shocks.” Amer-
ican Economic Review 104 (1):27–65.

Corsetti, Giancarlo, Luca Dedola, and Sylvain Leduc. 2014. “The International Dimension of
Productivity and Demand Shocks in the US Economy.” Journal of the European Economic
Association 12 (1):153–176.

Dekle, Robert, Jonathan Eaton, and Samuel Kortum. 2008. “Global Rebalancing with Gravity:
Measuring the Burden of Adjustment.” IMF Staff Papers 55 (3):511–540.

45



di Giovanni, Julian and Andrei A. Levchenko. 2010. “Putting the Parts Together: Trade, Ver-
tical Linkages, and Business Cycle Comovement.” American Economic Journal: Macroeco-
nomics 2 (2):95–124.

di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean. 2018. “The Micro Origins of
International Business Cycle Comovement.” American Economic Review 108 (1):82–108.

di Giovanni, Julian, Justin McCrary, and Till von Wachter. 2009. “Following Germany’s Lead:
Using International Monetary Linkages to Estimate the Effect of Monetary Policy on the
Economy.” Review of Economics and Statistics 91 (2):315–331.

di Giovanni, Julian and Jay C. Shambaugh. 2008. “The impact of foreign interest rates on
the economy: The role of the exchange rate regime.” Journal of International Economics
74 (2):341–361.

Eaton, Jonathan, Samuel S. Kortum, Brent Neiman, and John Romalis. 2016. “Trade and the
Global Recession.” American Economic Review 106 (11):3401–3438.

Frankel, Jeffrey A. and Andrew K. Rose. 1998. “The Endogeneity of the Optimum Currency
Area Criteria.” Economic Journal 108 (449):1009–25.

Galí, Jordi. 1999. “Technology, Employment, and the Business Cycle: Do Technology Shocks
Explain Aggregate Fluctuations?” American Economic Review 89 (1):249–271.

Galí, Jordi, Mark Gertler, and David López-Salido. 2007. “Markups, Gaps, and the Welfare
Costs of Business Fluctuations.” Review of Economics and Statistics 89 (1):44–59.

Greenwood, Jeremy, Zvi Hercowitz, and Gregory W Huffman. 1988. “Investment, Capacity
Utilization, and the Real Business Cycle.” American Economic Review 78 (3):402–17.

Hall, Robert E. 1997. “Macroeconomic Fluctuations and the Allocation of Time.” Journal of
Labor Economics 15 (1, pt. 2):s223–s250.

Hamilton, James D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

Heathcote, Jonathan and Fabrizio Perri. 2002. “Financial autarky and international business
cycles.” Journal of Monetary Economics 49 (3):601–627.

Hulten, Charles R. 1978. “Growth Accounting with Intermediate Inputs.” The Review of
Economic Studies 45 (3):511–518.

Huo, Zhen and Naoki Takayama. 2015. “Higher Order Beliefs, Confidence, and Business
Cycles.” Mimeo, University of Minnesota.

46



Imbs, Jean. 1999. “Technology, growth and the business cycle.” Journal of Monetary Eco-
nomics 44 (1):65 – 80.

———. 2004. “Trade, Finance, Specialization, and Synchronization.” Review of Economics
and Statistics 86 (3):723–34.

Johnson, Robert C. 2014. “Trade in Intermediate Inputs and Business Cycle Comovement.”
American Economic Journal: Macroeconomics 6 (4):39–83.

Kose, M. Ayhan, Christopher Otrok, and Charles H. Whiteman. 2003. “International Busi-
ness Cycles: World, Region, and Country-Specific Factors.” American Economic Review
93 (4):1216–1239.

Kose, M. Ayhan and Kei-Mu Yi. 2006. “Can the Standard International Business Cycle Model
Explain the Relation Between Trade and Comovement.” Journal of International Economics
68 (2):267–295.

Kydland, Finn E and Edward C Prescott. 1991. “Hours and employment variation in business-
cycle theory.” In Business Cycles. Springer, 107–134.

Levchenko, Andrei A. and Nitya Pandalai-Nayar. 2018. “TFP, News, and “Sentiments”: The
International Transmission of Business Cycles.” Forthcoming, Journal of the European
Economic Association.

Mendoza, Enrique G. 2010. “Sudden Stops, Financial Crises, and Leverage.” American Eco-
nomic Review 100 (5):1941–66.

Neumeyer, Pablo A. and Fabrizio Perri. 2005. “Business cycles in emerging economies: the
role of interest rates.” Journal of Monetary Economics 52 (2):345–380.

Ohanian, Lee E., Paulina Restrepo-Echavarria, and Mark L. J. Wright. 2017. “Bad Invest-
ments and Missed Opportunities? Postwar Capital Flows to Asia and Latin America.”
Forthcoming, American Economic Review.

O’Mahony, Mary and Marcel P. Timmer. 2009. “Output, Input and Productivity Measures at
the Industry Level: The EU KLEMS Database.” The Economic Journal 119 (538):F374–
F403.

Osuna, Victoria and Jose-Victor Rios-Rull. 2003. “Implementing the 35 Hour Workweek by
Means of Overtime Taxation.” Review of Economic Dynamics 6 (1):179–206.

Shambaugh, Jay C. 2004. “The Effect of Fixed Exchange Rates on Monetary Policy.” The
Quarterly Journal of Economics 119 (1):301–352.

47



Stockman, Alan C and Linda L Tesar. 1995. “Tastes and Technology in a Two-Country Model
of the Business Cycle: Explaining International Comovements.” American Economic Review
85 (1):168–85.

Timmer, Marcel P., Erik Dietzenbacher, Bart Los, Robert Stehrer, and Gaaitzen J. de Vries.
2015. “An Illustrated User Guide to the World Input–Output Database: the Case of Global
Automotive Production.” Review of International Economics 23 (3):575–605.

Wen, Yi. 2007. “By force of demand: Explaining international comovements.” Journal of
Economic Dynamics and Control 31 (1):1–23.

Young, Alwyn. 2017. “Consistency without Inference: Instrumental Variables in Practical
Application.” Mimeo, LSE.

48



Appendix A Estimation

A.1 TFP Estimation

Table A1 lists the countries and Table A2 the sectors in our sample. We require instruments
orthogonal to the TFP shocks in our panel that have predictive power for movements in inputs.
BFK use a monetary policy shock identified in a VAR, an oil price shock and the growth in
real defense spending. We use instruments similar in spirit: the lagged growth in real defense
spending in each country, an oil price shock constructed using the approach in Hamilton
(1994) and a version of a monetary policy shock that relies on the exogenous movements in
base-country interest rates affecting countries that are pegged to a base country. This last
instrument cannot be used for large countries like the US, UK, or Germany.

Table A1: Country Sample

Australia Germany Netherlands
Austria Greece Poland
Belgium Hungary Portugal
Canada India Russian Federation
Cyprus Ireland Slovak Republic
Czech Republic Italy Slovenia
Denmark Japan Spain
Estonia Republic of Korea Sweden
Finland Latvia UK
France Lithuania USA

Baseline Estimates: Our baseline estimates for TFP rely only on the G7 sample of coun-
tries, as these estimates are the least noisy. For these countries, the modified monetary policy
(exchange-rate based) instrument cannot be used. We therefore rely on the oil shock and
defense spending instruments. Table A3 reports the full results. Notice that we have multiple
instruments and multiple endogenous variables in our estimation. The standard first-stage
F statistic diagnostic therefore does not capture whether we suffer from a weak instruments
problem. To assess whether we suffer from this issue we calculate the Sanderson-Windmeijer
F statistic, which explicitly tests for the presence of weak instruments in the context of mul-
tiple instruments and endogenous variables. The SW-F statistic is 7.97, suggesting that the
instruments are not weak. In 2 sectors, Mining and Quarrying and Food, Beverages and To-
bacco returns to scale coefficient point estimates are negative. We drop those sectors from the
estimation sample, and set their returns to scale coefficient to 1 in the quantitative model. The
utilization adjustment coefficient (δ̂2

j ) for those sectors is set equal to the utilization adjustment
coefficient estimated for the group of sectors to which they belong, non-durable manufacturing
for Food, Beverages and Tobacco, and non-manufacturing for Mining and Quarrying.
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Comparison to BFK’s Estimates and Sensitivity: While the point estimates of both
the returns to scale for our sectors and the coefficients on the utilization adjustment term
naturally differ from those in BFK, they are not significantly different from the estimates
in that paper in many cases. For instance, we estimate coefficients on the utilization ad-
justment term of 1.419(0.389), 2.939(1.767) and 0.245(0.649) for durables, non-durables and
non-manufacturing respectively. The comparable estimates in BFK Table 1 are 1.34(0.22),
2.13(0.38) and 0.64(0.34) respectively.

We construct TFP series directly using the coefficient estimates in BFK (applied to all coun-
tries), and correlate that series to our TFP series. Table A4 reports the results. The TFP
series based on the BFK coefficients have an 86% correlation with ours. To assuage concerns
that for some countries these instruments might individually be weak, we estimate the coef-
ficients excluding each of the G7 countries one after another, and construct TFP series with
those alternative coefficients. Table A4 presents the pairwise correlations between our baseline
TFP series, and all TFP series dropping an individual country. With the partial exception of
dropping Canada, excluding individual G7 countries produces TFP series quite correlated with
our baseline. All in all, the TFP series are highly correlated across all approaches, suggesting
our estimates are not driven by any country in particular.

Finally, we estimate the production function parameters using the full 30-country sample.
In this sample, we introduce a third instrument, which is the foreign monetary policy shock
interacted with the exchange rate regime. This instrument follows di Giovanni and Shambaugh
(2008) and di Giovanni, McCrary, and von Wachter (2009), who show that major country
interest rates have a significant effect on countries’ output when they peg their currency to
that major country. The assumption in specifications that use this instrument is that for
many countries, interest rates in the US, Germany, or the UK are exogenous. We exclude the
“base interest rate” countries themselves (the US, Germany, and the UK) from the sample.
The exchange rate regime classification along with information on the base country comes
from Shambaugh (2004), updated in 2015. Finally, base country interest rates are proxied by
the Money Market interest rates in these economies, and obtained from the IMF International
Financial Statistics. Table A4 correlates the resulting TFP estimates to with our baseline.
This alternative TFP series is positively correlated with the baseline, with a coefficient of 0.6.

Comparing Estimates of Utilization with Other Available Measures: Our TFP es-
timation process also provides us with series for utilization rates by sector. In the U.S., the
Federal Reserve Board (FRB) also publishes series of industry-level utilization for manufactur-
ing industries only. These series are constructed by dividing an index of industrial production
by an index of estimated industrial capacity. The FRB series are constructed using a number
of sources including survey data from the U.S. Census Bureau. The FRB cautions that these
series should not be compared across industries (in contrast to our estimates). See Boehm
and Pandalai-Nayar (2019) for a discussion.

The left panel of Figure A1 compares our industry-level estimates to these public series. The
two are positively correlated, despite the different underlying data sources and methodology
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Figure A1: Comparison between Estimated Utilization and Survey Data
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Notes: This figure compares our estimated utilization growth rate and the change in the survey measure of utilization
of capacity. The left panel plots growth rates of the sector-level utilization series for the US based on our procedure
against the FRB utilization survey. The right panel plots the growth rate of the country-level average utilization rate
based on our procedure against utilization growth rates based on surveys by the FRB for the US and Eurostat for
European countries. Both plots include the OLS fit, and report the coefficient point estimate and the standard error.

used for constructing them. The right panel of the figure compares our estimates for the
country-level average utilization growth rate against the country-level utilization based on
the FRB data for the US, and Eurostat data for some European countries. Again, we find a
positive correlation.

Properties of the TFP series: Figure A2 contrasts the Solow residual with the utilization-
adjusted TFP series for all the countries in our sample. While we do find that the utilization-
adjusted TFP series is less volatile than the Solow residual for the U.S., as in BFK, for the
large majority of other countries the adjusted TFP series is more volatile. In fact, the mean
(median) variance of the TFP series is .0006 (0.0005), while for the Solow residual it is 0.0008
(0.0004).

52



T
a
bl

e
A

3:
P
ro
du

ct
io
n
Fu

nc
ti
on

E
st
im

at
io
n
R
es
ul
ts

In
du

st
ry

R
et
ur
ns

to
Sc
al
e
(δ̂

1 j
)

U
ti
liz
at
io
n
(δ̂

2 j
)

In
du

st
ry

R
et
ur
ns

to
Sc
al
e
(δ̂

1 j
)

U
ti
liz
at
io
n
(δ̂

2 j
)

D
u
ra
b
le
s

N
on

-d
u
ra
b
le

n
on

-m
an

u
fa
ct
u
ri
n
g

w
oo

d
an

d
of

w
oo

d
an

d
co
rk

0.
75
0*
**

sa
le

m
ai
nt
en
an

ce
an

d
re
pa

ir
of

m
ot
or

1.
65
2*
**

(0
.1
33
)

ve
hi
cl
es

an
d
m
ot
or
cy
cl
es
;r

et
ai
ls

al
e
of

fu
el

(0
.3
16
)

ba
si
c
m
et
al
s
an

d
fa
br
ic
at
ed

m
et
al

0.
70
1*
*

w
ho

le
sa
le

tr
ad

e
an

d
co
m
m
is
si
on

tr
ad

e
1.
47
1*
**

(0
.3
29
)

ex
ce
pt

of
m
ot
or

ve
hi
cl
es

an
d
m
ot
or
cy
cl
es

(0
.1
67
)

m
ac
hi
ne
ry

ne
c

0.
79
1*
**

re
ta
il
tr
ad

e
ex
ce
pt

of
m
ot
or

ve
hi
cl
es

0.
87
0*

(0
.2
41
)

1.
42
0*
**

an
d
m
ot
or
cy
cl
es
;r

ep
ai
r
of

ho
us
eh
ol
d
go

od
s

(0
.4
54
)

el
ec
tr
ic
al

an
d
op

ti
ca
le

qu
ip
m
en
t

0.
71
1*
*

(0
.3
89
)

tr
an

sp
or
t
an

d
st
or
ag
e

1.
07
9*
**

(0
.3
00
)

(0
.1
63
)

tr
an

sp
or
t
eq
ui
pm

en
t

0.
84
3*
**

po
st

an
d
te
le
co
m
m
un

ic
at
io
ns

0.
63
3*
**

(0
.2
07
)

(0
.1
50
)

m
an

uf
ac
tu
ri
ng

ne
c;

re
cy
cl
in
g

0.
89
5*
**

re
al

es
ta
te

ac
ti
vi
ti
es

0.
45
1

(0
.1
29
)

(0
.3
29
)

re
nt
in
g
of

m
&
eq

an
d
ot
he
r
bu

si
ne
ss

ac
ti
vi
ti
es

1.
22
5*
**

(0
.2
33
)

0.
26
0

ag
ri
cu
lt
ur
e
hu

nt
in
g
fo
re
st
ry

an
d
fis
hi
ng

1.
71
4*

(0
.6
43
)

(0
.8
92
)

N
on

-d
u
ra
b
le

m
an

u
fa
ct
u
ri
n
g

el
ec
tr
ic
it
y
ga
s
an

d
w
at
er

su
pp

ly
1.
82
5

(1
.3
87
)

te
xt
ile
s
te
xt
ile

le
at
he
r
an

d
fo
ot
w
ea
r

0.
29
1

co
ns
tr
uc
ti
on

1.
04
1*
**

(0
.5
23
)

(0
.2
25
)

pu
lp

pa
pe

r
pa

pe
r
pr
in
ti
ng

an
d
pu

bl
is
hi
ng

0.
50
7

ho
te
ls

an
d
re
st
au

ra
nt
s

1.
26
7*
**

(0
.4
31
)

(0
.4
29
)

co
ke

re
fin

ed
pe

tr
ol
eu
m

an
d
nu

cl
ea
r
fu
el

0.
83
2

2.
92
9*

fin
an

ci
al

in
te
rm

ed
ia
ti
on

1.
33
5*
**

(1
.0
22
)

(1
.7
71
)

(0
.3
68
)

ch
em

ic
al
s
an

d
ch
em

ic
al

pr
od

uc
ts

0.
80
8*

pu
bl
ic

ad
m
in

an
d
de
fe
ns
e;

1.
86
3

(0
.4
27
)

co
m
pu

ls
or
y
so
ci
al

se
cu

ri
ty

(1
.5
04
)

ru
bb

er
an

d
pl
as
ti
cs

0.
92
6*
**

ed
uc
at
io
n

0.
67
4*
**

(0
.2
79
)

(0
.2
46
)

ot
he
r
no

nm
et
al
lic

m
in
er
al

0.
69
8

he
al
th

an
d
so
ci
al

w
or
k

1.
37
4

(0
.4
87
)

(2
.1
73
)

ot
he
r
co
m
m
un

it
y
so
ci
al

an
d
pe

rs
on

al
se
rv
ic
es

0.
75
2*
**

(0
.1
98
)

N
ot
es
:
T
hi
s
ta
bl
e
co
nt
ai
ns

th
e
re
su
lt
s
fr
om

th
e
pr
od

uc
ti
on

fu
nc
ti
on

es
ti
m
at
io
n
de

sc
ri
be

d
in

Se
ct
io
n
4.

St
an

da
rd

er
ro
rs

in
pa

re
nt
he

se
s.

Si
gn

ifi
ca
nc
e

le
ve
ls

ar
e
in
di
ca
te
d
by

**
*
p<

0.
01
,*

*
p<

0.
05
,*

p<
0.
1.

SW
-F

st
at
is
ti
c
fo
r
th
e
fir
st

st
ag
e
is

7.
97
.

53



Table A4: Correlation between Alternative TFP Estimates

Baseline BFK ex-USA ex-UK ex- ex- ex- ex- ex- 30-country
coefficients Canada Germany France Italy Japan estimation

Baseline 1.000
BFK coefficients 0.861 1.000
ex-USA 0.956 0.781 1.000
ex-UK 0.889 0.751 0.788 1.000
ex-Canada 0.472 0.415 0.307 0.591 1.000
ex-Germany 0.965 0.869 0.914 0.843 0.579 1.000
ex-France 0.951 0.820 0.969 0.738 0.248 0.910 1.000
ex-Italy 0.878 0.793 0.798 0.865 0.415 0.814 0.796 1.000
ex-Japan 0.794 0.728 0.692 0.676 0.572 0.813 0.687 0.645 1.000
30-country est. 0.595 0.511 0.586 0.514 0.404 0.666 0.513 0.520 0.570 1.000
Notes: This table report the correlations of the estimated TFP series using a number of different approaches.“BFK
estimate” refers to TFP series for all countries using the coefficient estimates in Basu, Fernald, and Kimball (2006)
and “ex-COUNTRY” refers to TFP series using the production function coefficient estimates from a sample that,
excludes the G7 country in question. “30-country estimation” refers to the TFP series using the production function
estimation based on 30 countries.

54



55



Figure A2: Comparison between Utilization-Adjusted TFP and the Solow Residual
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Notes: This figure displays the log changes in the Solow residual and in the utilization-adjusted TFP series for every country in our sample.
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Figure A3: Comparison between Utilization-Adjusted TFP and the Non-Technology Shocks
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Notes: This figure displays log changes in the utilization-adjusted TFP and in the recovered non-technology shocks series for every country in our sample.
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A.2 Estimating Model Elasticities

We use model-implied relationships to estimate ρ and ε. Denote by a “hat” the gross pro-
portional change in any variable x̂t ≡ xt/xt−1. To introduce an error term in the estimating
equations, assume that iceberg trade costs, final consumer taste shocks, and input share
shocks have a stochastic element, and denote their gross proportional changes by τ̂mnjt, ϑ̂mnjt,
and µ̂mj,nit, respectively. Straightforward manipulation of CES consumption shares yields the
following relationships between shares and prices:

ln

(
π̂fmnjt

π̂fm′njt

)
= (1− ρ) ln

(
P̂mjt

P̂m′jt

)
+ ln

(
ϑ̂mnjtτ̂

1−ρ
mnjt

ϑ̂m′njtτ̂
1−ρ
m′njt

)
(A.1)

and

ln

(
π̂xmj,nit
π̂xm′j,nit

)
= (1− ε) ln

(
P̂mjt

P̂m′jt

)
+ ln

(
µ̂mj,ni,tτ̂

1−ε
mnjt

µ̂m′j,ni,tτ̂
1−ε
m′njt

)
. (A.2)

We express the final consumption share change π̂fmnjt relative to the final consumption share
change in a reference country m′. This reference country is chosen separately for each im-
porting country-sector n, j as the country with the largest average expenditure share in that
country-sector. (Thus, strictly speaking, the identity of the reference country m′ is distinct
for each importing country-sector, but we suppress the dependence of m′ on n, j to streamline
notation.) Furthermore, we drop the own expenditure shares π̂fnnjt from the estimation sam-
ple, as those are computed as residuals in WIOD, whereas import shares from other countries
are taken directly from the international trade data. Dropping the own expenditure shares
has the added benefit of making the regressions less endogenous, as the domestic taste shocks
are much more likely to affect domestic prices.

We use two estimation approaches for (A.1)-(A.2). We first show the results with OLS. To
absorb as much of the error term as possible, we include source-destination-reference country-
time (n×m×m′ × t) fixed effects. These absorb any common components occurring at the
country 3-tuple-time level, such as exchange rate changes and other taste and transport cost
changes, and thus the coefficient is estimated from the variation in the relative sectoral price
indices and relative sectoral share movements within that cell. The identifying assumption is
then that price change ratio P̂mjt/P̂m′jt is uncorrelated with the residual net of the n×m×m′×t
fixed effects. The remaining errors would be largely measurement error. If this measurement
error is uncorrelated with the price change ratios, then the OLS estimates are unbiased, and
if not, we would expect a bias towards zero. In the latter case, the IV estimates (described
below) should be larger than the OLS estimates, assuming the measurement error in (A.1)
and (A.2) is independent of the measurement error in the technology shock ratios.

The estimation amounts to regressing relative share changes on relative price changes. A
threat to identification would be that relative price changes are affected by demand shocks
(e.g. ϑ̂mnjt), and thus correlated with the residual. As a way to mitigate this concern, we
also report estimates based on the subsample in which destination countries are all non-G7,
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and the source and reference countries are all G7 countries. In this sample it is less likely
that taste shocks in the (smaller) destination countries will affect relative price changes in the
larger G7 source countries. Finally, to reduce the impact of small shares on the estimates, we
report results weighting by the size of the initial shares (πfmnj,t−1 and πxmj,ni,t−1).

We also implement IV estimation. We use the TFP shocks Ẑmjt/Ẑm′jt as instruments for
changes in relative prices. The exclusion restriction is that the technology shocks are un-
correlated with taste and trade cost shocks, and thus only affect the share ratios through
changing the prices. Even if the shock ratio Ẑmjt/Ẑm′jt is a valid instrument for observed
prices, it does not include the general-equilibrium effects on prices in the model. To use all of
the information –both the direct and indirect GE effects –incorporated in the model, we also
use the model-optimal IV approach to construct the instrument. In our context this simply
involves computing the model using only the estimated technology shocks, and solving for
the sequence of equilibrium prices in all countries and sectors. The model-implied prices are
then the optimal instrument for the prices observed in the data. See Chamberlain (1987) for
a discussion of optimal instruments, and Adao, Arkolakis, and Esposito (2017) and Bartelme
et al. (2018) for two recent applications of this approach. The results from the model-optimal
IV are very similar to simply instrumenting with the TFP shock ratio, and we do not report
them to conserve space.

Table A5 presents the results of estimating equations (A.1) and (A.2). Columns 1-3 report
the OLS estimates of ρ (top panel) and ε (bottom panel). The OLS estimates of ρ are all
significantly larger than zero, and we cannot rule out a Cobb-Douglas final demand elasticity.
The OLS estimates for ρ are also not very sensitive to restricting the sample to non-G7 desti-
nations and G7 sources, or to weighting by the initial share. The IV estimates in columns 4-6
are substantially larger than the OLS coefficients, ranging from 2.27 to 3.04, and significantly
different from 1 in most cases. This difference between OLS and IV could suggest either
measurement error in (A.1), or greater noise in the IV estimator (Young, 2017). Given the
substantial disagreement between OLS and IV estimates of ρ, we report the results under two
values: ρ = 1, corresponding to the OLS estimates, and ρ = 2.75 based on the IV.

The OLS and IV estimates of ε display somewhat greater consensus. The OLS point estimates
are in the range 0.68, and not sensitive to the sample restriction or weighting. The IV estimates
are less stable. While the full sample (column 4) yields an elasticity of 2.8, either restricting to
the non-G7 destinations/G7 sources, or weighting by size reduces the coefficient dramatically
and renders it not statistically different from 1. Such evidence for the low substitutability
of intermediate inputs is consistent with the recent estimates by Atalay (2017) and Boehm,
Flaaen, and Pandalai-Nayar (2019), who find even stronger complementarity. We therefore
set ε = 1 for all implementations of the model.

A.3 Estimating Shock Processes

As discussed in Section 6, estimating an unrestricted process for the technology and non-
technology shocks is not possible due to the short panel of measured shocks. We restrict the
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Table A5: Elasticity Estimates

(1) (2) (3) (4) (5) (6)
OLS OLS OLS IV IV IV

(G7 m,m′, (weighted) (G7 m,m′, (weighted)
non-G7 n) non-G7 n)

ρ 0.775 0.730 1.051 2.881 2.273 3.037
SE (0.055) (0.146) (0.082) (0.584) (0.966) (0.470)

First stage K-P F 92.117 30.539 89.669
FE Yes Yes Yes Yes Yes Yes

ε 0.698 0.686 0.682 2.838 0.382 1.322
SE (0.051) (0.120) (0.143) (0.578) (0.872) (0.856)

First stage K-P F 94.863 16.188 86.631
FE Yes Yes Yes Yes Yes Yes

Notes: Standard errors clustered at the destination-source-reference country level in parentheses. This table presents
results from the OLS and IV estimation of (A.1) and (A.2). The fixed effects used in each regression are n×m×m′×t.
The instruments are the relative productivity shocks Ẑmjt/Ẑm′jt, with the Kleibergen-Papp first stage F-statistic
reported. The weights in columns 3 and 6 are lagged share ratios πfmnjt−1 and πxmj,nit−1.

dynamic model to the G7 countries, for which we have the longest panel of shocks. While
we still cannot estimate a completely unrestricted VAR, we impose minimal restrictions that
allow the shocks to be correlated (as the measured shocks are), and further, allow for spillovers
between country-sectors. Our specification allows for contemporaneous spillovers between
country-sectors, but restricts the structure of lagged spillovers. We permit a country-sector
specific lagged autoregressive parameter, so country-sector shocks can be persistent. We
restrict lagged spillovers to be common within a country (across sectors), and zero otherwise.
We allow for a full variance-covariance matrix of the error terms, which amounts to assuming
completely unrestricted contemporaneous spillovers. The sample variance-covariance matrix
of the residuals for the period 1995-2007 serves as an estimate of the covariance matrix of the
error term. The technology shock process we estimate is:

ln znjt = ρznj ln znjt−1 + ζzn1 (m = n, k 6= j) ln zmkt−1 + θznjt. (A.3)

ln ξnjt = ρξnj ln ξnjt−1 + ζξn1 (m = n, k 6= j) ln ξmkt−1 + θξnjt. (A.4)

with θt ∼ N (0,Σ), that is, we permit a full covariance matrix.

The choice of restrictions strikes a balance between relative parsimony, which improves the
precision of the parameters estimates, and sufficient flexibility to replicate the measured shock
correlations in the data. We experimented with other processes using methods such as LASSO
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regressions without much change to the simulated shock correlations. In particular, we have
modified the equations above to also include a sector-specific lagged spillover term, but these
coefficients were all insignificant, and so we use the more parsimonious process in the baseline
analysis. The processes (A.3)-(A.4) are estimated separately for each country-sector. Table
A6 summarizes the estimation results.

Table A6: Shock Processes: Autoregressive Parameters

Mean Median 25th pctile 75th pctile

ln znjt

Own lag (ρznj) 0.857 0.864 0.830 0.893
Spillover lag (δzn) 0.000 -0.001 -0.002 0.001

ln ξnjt

Own lag (ρξnj) 0.698 0.750 0.628 0.824
Spillover lag (δξn) 0.004 0.002 -0.001 0.006

Notes: This table presents results from estimating the shock stochastic processes (A.3)-(A.4). The measures are
summary statistics of the coefficients in the sample of sectors and countries. The ξnjt series is computed under the
calibration of ρ = 2.75 and ψu = 4.
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Appendix B Model and Quantitative Results

B.1 TFP, GDP, and the Solow Residual

This appendix presents the derivation of the decomposition of GDP growth into the movement
in aggregate TFP and aggregate factor inputs, and of the Solow residual into the components
due to TFP and unobserved factor utilization.

Aggregate GDP Growth Using the definition of real GDP (2.2), the change in real GDP
at time t relative to steady state is:

∆Ynt =
J∑
j=1

(
Pnj∆Ynjt − PX

nj∆Xnjt

)
,

where Pnj and PX
nj are the steady state (“base”) prices. The proportional change relative to

steady state is:

∆Ynt
Yn

=

∑J
j=1

(
Pnj∆Ynjt − PX

nj∆Xnjt

)
Yn

=
J∑
j=1

Dnj

(
∆Ynjt
Ynj

− ∆Xnjt

Xnj

PX
njXnj

PnjYnj

)
,

where the omission of time subscripts denotes steady state values, and Dnj ≡ PnjYnj
Yn

is the
steady state Domar weight of sector j in country n, that is, the weight of the sector’s gross
sales in aggregate value added. Approximate the growth rate with log difference:

d lnYnt ≈
J∑
j=1

Dnj

(
d lnYnjt −

PX
njXnj

PnjYnj
d lnXnjt

)
(B.1)

=
J∑
j=1

Dnj (d lnZnjt + γjαjηjd lnKnjt + γj(1− αj)ηjd lnLnjt

+γj (1− ηj) d lnXnjt −
PX
njXnj

PnjYnj
d lnXnjt

)
.
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Under the assumption that the share of payments to inputs in total revenues is the same as
in total costs, the growth in real GDP can be written as:21

d lnYnt ≈
J∑
j=1

Dnj

d lnZnjt︸ ︷︷ ︸
True TFP

+ (γj − 1)d ln
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
︸ ︷︷ ︸

Scale Effect

(B.2)

+αjηjd lnKnjt + (1− αj)ηjd lnLnjt︸ ︷︷ ︸
Primary Inputs

 .

Then, the growth rate of GDP can be expressed in terms of observable and estimated values:

d lnYnt ≈
J∑
j=1

Dnj

d lnZnjt︸ ︷︷ ︸
True TFP

+ (γj − 1)
[
d ln

(
M

αjηj
njt N

(1−αj)ηj
njt H

(1−αj)ηj+ξj
njt X

1−ηj
njt

)]
︸ ︷︷ ︸

Scale Effect

(B.3)

+ (αjηjd lnMnjt + (1− αj)ηjd lnHnjt + (1− αj)ηjd lnNnjt) + ζjd lnHnjt︸ ︷︷ ︸
Utilization-adjusted Primary Inputs

 ,

leading to equations (4.6) and (4.7) in the main text, with the input-driven component of
GDP growth defined as:

d ln Int ≡
J∑
j=1

Dnj

(γj − 1)d ln
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
︸ ︷︷ ︸

Scale Effect

(B.4)

+αjηjd lnKnjt + (1− αj)ηjd lnLnjt︸ ︷︷ ︸
Primary Inputs

 .

Relationship to Solow residual The expression in equation (4.6) is useful to compare the
estimated TFP series to the traditional measure of technology, the Solow residual. The Solow
residual Snjt takes factor shares and nets out the observable factor uses. It has the following
relationship to gross output and observed inputs:

d lnYnjt = d lnSnjt+αjηjd lnMnjt+(1−αj)ηjd lnHnjt+(1−αj)ηjd lnNnjt+(1− ηj) d lnXnjt.

21Recall that, regardless of the nature of variable returns to scale or market structure, under cost minimization αjηj
is the share of payments to capital in the total costs, while (1 − αj)ηj is the share of payments to labor. We do not
observe total costs, only total revenues. We assume that αjηj also reflects the share of payments to capital in total
revenues. Under our assumption that sector j is competitive and the variable returns to scale are external to the firm,
this assumption is satisfied. In that case, these can be taken directly from the data as αjηj = RnjKnj/PnjYnj and
(1− αj)ηj =WnjLnj/PnjYnj . In practice, we compute these steady state values as time averages in our data.
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Plugging this way of writing output growth into the real GDP growth equation (B.1), we get
the following expression:

d lnYnt ≈
J∑
j=1

Dnj (d lnSnjt + αjηjd lnMnjt + (1− αj)ηjd lnHnjt + (1− αj)ηjd lnNnjt

+ (1− ηj) d lnXnjt − d lnXnjt

pXnjt−1Xnjt−1

pnjt−1Ynjt−1

)
(B.5)

=
J∑
j=1

Dnj (d lnSnjt + αjηjd lnMnjt + (1− αj)ηjd lnHnjt + (1− αj)ηjd lnNnjt) .

Comparing (B.2) to (B.5), the Solow residual contains the following components:

d lnSnjt = d lnZnjt︸ ︷︷ ︸
True TFP

+ (γj − 1)d ln
[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
︸ ︷︷ ︸

Scale Effect

+αjηjd lnUnjt + (1− αj)ηjd lnEnjt︸ ︷︷ ︸
Unobserved Utilization

.

This expression makes it transparent that in this setting, the Solow residual can diverge from
the true TFP shock for two reasons: departures from constant returns to scale at the industry
level, and unobserved utilization of inputs.

Let the aggregate Solow residual be denoted by:

d lnSnt =
J∑
j=1

Dnjd lnSnjt

= d lnZnt + d lnUnt,

where in the second equality, d lnUnt is the aggregate utilization adjustment:

d lnUnt ≡
J∑
j=1

Dnj

{
(γj − 1)d ln

[(
K
αj
njtL

1−αj
njt

)ηj
X

1−ηj
njt

]
(B.6)

+αjηjd lnUnjt + (1− αj)ηjd lnEnjt} .

It is immediate that the observed Solow residual can be correlated across countries both due
to correlated shocks to true TFP, and due to correlated unobserved input adjustments.
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B.2 Derivation of the Analytical Influence Vector

The accounting equation for the sales in country n sector j is

PnjtYnjt =
∑
m

ωmjPmtFmtπfnmjt +
∑
m

∑
i

(1− ηi)PmitYmitπxnj,mit.

Note that with financial autarky, the total sales of final goods is the same as the value added
across sectors

PmtFmt =
∑
i

ηiPmitYmit.

The accounting equation can be rewritten as

PnjtYnjt =
∑
m

∑
i

ωmjηiPmitYmitπ
f
nmjt +

∑
m

∑
i

(1− ηi)PmitYmitπxnj,mit.

Now we consider the log-linearized version. It follows that

lnPnjt + lnYnjt =
∑
m

∑
i

ηiωmjπ
f
nmjPmiYmi

PnjYnj

(
lnPmit + lnYmit + ln πfnmjt

)
+
∑
m

∑
i

(1− ηi)πxnj,miPmiYmi
PnjYnj

(lnPmit + lnYmit + ln πxnj,mit), (B.7)

and the log-deviation of import shares are given by

ln πfnmjt =(1− ρ)
∑
k

πfkmj (lnPnjt − lnPkjt)

lnπxnj,mit =(1− ε)
∑
k,l

πxklmi (lnPnjt − lnPk`t) .

where the variables without subscript t stand for their corresponding steady-state values.

Denote by Ψf and Ψx the matrices that collect export shares for final use and for intermediate
use. The dimension of these matrices is NJ ×NJ , with typical elements being

Ψf
nj,mi ≡

ηiωmjπ
f
nmjPmiYmi

PnjYnj
, and Ψx

nj,mi ≡
(1− ηi)PmiYmiπxnj,mi

PnjYnj
. (B.8)

Denote by Πf and Πx the matrices that collect import shares for final use and for intermediate
use. The typical elements of these matrices are

Πf
nj,mi ≡

{
0, if i 6= j

πfmnj, if i = j
, and Πx

nj,mi ≡ πxmi,nj. (B.9)
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In matrix form, equation (B.7) can be written as

ln Pt + ln Yt =

(
Ψf + Ψx

)
(ln Pt + ln Yt) +

(1− ρ)

(
diag

(
ΨfΠf1

)
−ΨfΠf

)
ln Pt + (1− ε)

(
diag (ΨxΠx1)−ΨxΠx

)
ln Pt

Together with the choice of a numeraire good, we can express the change of prices as a function
of changes in outputs:

ln Pt = P ln Yt

.

At the supply side, the optimality conditions on the labor supply are(
ψh − 1− ψh

ψe

)
lnHnjt = − log ξnjt + ln

(
Wnjt

Pnt

)
,

lnEnjt =
ψh

ψe
lnHnjt,

lnUnjt =
ψh

ψu
lnUnjt.

Combining these with the production function leads to:

lnYnjt = lnZnjt +

(
γjηjαj

ψh

ψu
+ γjηj(1− αj)

ψh

ψe
+ γjηj(1− αj)

)
lnHnjt + γj(1− ηj) lnXnjt

. Note that here the variation of machines and employment are muted in a static model. The
wage rate and the price for the intermediate goods equal to their marginal products

lnWnjt − lnPnjt = lnYnjt − lnHnjt − lnEnjt,

lnP x
njt − lnPnjt = lnYnjt − lnXnjt.

The log-deviations of final goods prices and intermediate goods prices to their steady-state
values are

lnPnt = ωni
∑
m

πfmni lnPmit, and lnP x
njt = ωni

∑
m

πxmi,nj lnPmit.

67



We can relate the outputs with the prices as

lnYnjt = lnZnjt −
(
γjηjαj
ψu

+
γjηj(1− αj)

ψe
+
γjηj(1− αj)

ψh

)(∑
i

ωni
∑
m

πfmni lnPmit + ln ξnjt

)

+

(
γjηjαj
ψu

+
γjηj(1− αj)

ψe
+
γjηj(1− αj)

ψh
+ γj(1− ηj)

)
(lnPnjt + lnYnjt) (B.10)

− γj(1− ηj)
∑
m,i

πxmi,nj lnPmit

By defining matrices Eh, Ex, and Π̃f as

Ehnj,mi ≡
{

γjηjαj
ψu

+
γjηj(1−αj)

ψe
+

γjηj(1−αj)
ψh

, if i = j and n = m

0, otherwise

Exnj,mi ≡
{
γj(1− ηj), if i = j and n = m
0, otherwise (B.11)

Π̃f
nj,mi ≡ ωniπ

f
mni,

it follows that

ln Yt = ln Zt − EhΠ̃f ln Pt − EhΠ̃f ln ξt + (Eh + Ex)(ln Pt + ln Yt)− ExΠx ln Pt.

Combining with the previous result that ln Pt = P ln Yt, we obtain the solution:

ln Yt =

{
I−

(
Eh + Ex

)
(I + P) +

(
EhΠ̃f + ExΠx

)
P
}−1 (

ln Zt − Eh ln ξt
)
.

The expression for the Change in GDP Evaluated at base prices, the total real value
added or GDP in country n is

Ynt =
∑
j

(
PnjYnjt −

∑
m,i

PmiXmi,njt

)
.

Expressed in log-deviations, this becomes

lnYnt =
∑
j

(
PnjYnj
PnFn

lnYnjt −
∑
m,i

PmiXmi,nj

PnFn
lnXmi,njt

)
.
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Note that

lnXmi,njt = lnPnjt + lnYnjt + ln πxmi,njt − lnPmit

= lnPnjt + lnYnjt + (1− ε)
∑
k,l

πxkl,nj(lnPmit − lnPk`t)− lnPmit

= lnPnjt + lnYnjt − ε lnPmit + (ε− 1)
∑
k,l

πxkl,nj lnPk`t.

Therefore,

lnYnt =
∑
j

(
ηjPnjYnj
PnFn

lnYnjt −
(1− ηj)PnjYnj

PnFn

(
lnPnjt + (ε− 1)

∑
k,l

πxkl,nj lnPk`t

)

+ ε
∑
m,i

PmiXmi,nj

PnFn
lnPmit

)

=
∑
j

(
ηjPnjYnj
PnFn

lnYnjt −
(1− ηj)PnjYnj

PnFn

(
lnPnjt −

∑
k,l

πxkl,nj lnPk`t

))
.

The second term reflects the relative price changes between outputs and inputs. Define the
matrices η and D as

ηnj,mi ≡
{
ηj, if i = j and n = m
0, otherwise , and Dnj,mi ≡

{
PnjYnj
PnFn , if i = j and n = m

0, otherwise
(B.12)

The vector of total value added/GDP is

ln GDPt = ηD ln Yt − (I− η)D(I−Πx)P ln Yt.

B.3 Extracting Non-Technology Shocks

Similar to the GDP measurement, the log-deviation of the value added in country n sector j
is

lnVnjt =
ηjPnjYnj
Vnj

lnYnjt −
(1− ηj)PnjYnj

Vnj

(
lnPnjt −

∑
k,l

πxkl,nj lnPk`t

)
.
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Define Ṽ1, Ṽ2, and Ṽ3 as

Ṽ 1
nj,mi ≡

{
ηjPnjYnj
Vnj

, if i = j and n = m

0, otherwise

Ṽ 2
nj,mi ≡

{
− (1−ηj)PnjYnj

Vnj
, if i = j and n = m

0, otherwise

Ṽ 3
nj,mi ≡

(1− ηj)PnjYnj
Vnj

πxmi,nj

We have
ln Vt = V ln Yt,

where
V = Ṽ1 + (Ṽ2 + Ṽ3)P . (B.13)

With changes of machines and employment, equation (B.10) extends to

lnYnjt = lnZnjt −
(
γjηjαj
ψu

+
γjηj(1− αj)

ψe
+
γjηj(1− αj)

ψh

)(∑
i

ωni
∑
m

πfmni lnPmit + ln ξnjt

)

+

(
γjηjαj
ψu

+
γjηj(1− αj)

ψe
+
γjηj(1− αj)

ψh
+ γj(1− ηj)

)
(lnPnjt + lnYnjt)

− γj(1− ηj)
∑
m,i

πxmi,nj lnPmit

+ γjηjαj lnMnjt −
(
γjηjαj
ψu

+
γjηj(1− αj)

ψe
+
γjηj(1− αj)

ψh
+ γjηj(1− αj)

)
lnNnjt.

Define

Emnj,mi ≡
{
γjηjαj, if i = j and n = m
0, otherwise (B.14)

Ennj,mi ≡
{

γjηjαj
ψu

+
γjηj(1−αj)

ψe
+

γjηj(1−αj)
ψh

+ γjηj(1− αj), if i = j and n = m

0, otherwise
(B.15)

It follows that

d ln Yt =

{
I−
(
Eh + Ex

)
(I+P)+

(
EhΠ̃f + ExΠx

)
P
}−1 (

d ln Zt − Ehd ln ξt + Emd ln Mt + End ln Nt

)
.

B.4 Exact Solution to Static Counterfactuals

This section sets up the exact solution to the static model, in changes, following the method-
ology of Dekle, Eaton, and Kortum (2008). Denote by a “hat” the gross proportional change
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in any variable x̂t ≡ xt/xt−1. To streamline notation, define Υnjt ≡ PnjtYnjt to be the gross
revenue in sector j, country n. In response to TFP and non-TFP shocks, the price in sector
j, country n experiences the change:

P̂njt = Ẑ−1
njtΥ̂

1−γj+αjηj
(
ψu−1
ψu

)
γj+(1−ψ̃)(1−αj)ηjγj

njt M̂
−αjηjγj
njt

(
ξ̂njtP̂nt

)(
αj
ψu

+ψ̃(1−αj))ηjγj
(B.16)

N̂
(ψ̃−1)(1−αj)ηjγj+

αjηj
ψu

γj

njt

(∑
m,i

πmi,njt−1P̂
1−ε
mit

) 1−ηj
1−ε γj

.

This, together with the dependence of P̂nt on the constituent P̂njt:

P̂nt =
∏
j

(
P̂ f
njt

)ωjn
(B.17)

P̂ f
njt =

[∑
m

P̂ 1−ρ
mjt π

f
mnjt−1

] 1
1−ρ

(B.18)

defines a system of J ×N equations in prices, conditional on known initial-period data quan-
tities (such as πfmnjt−1), a vector of Υ̂njt’s, and an assumption on M̂njt and N̂njt. The price
changes in turn determine next period’s shares:

πfnmjt =
P̂ 1−ρ
njt π

f
nmjt−1∑

k P̂
1−ρ
kjt π

f
kmjt−1

, (B.19)

πxnj,mit =
P̂ 1−ε
njt π

x
nj,mit−1∑

k,l P̂
1−ε
klt π

x
kl,mit−1

. (B.20)

These trade shares have to be consistent with market clearing at the counterfactual t, expressed
using proportional changes as:

Υ̂njtΥnjt−1 =
∑
m

[
πfnmjtωjm

(∑
i

ηiΥ̂mitΥmit−1

)
(B.21)

+
∑
i

πxnj,mit (1− ηi) Υ̂mitΥmit−1

]
.

The sets of equations (B.16)-(B.21) represent a system of 2 × N × J + N2 × J + N2 × J2

unknowns, P̂njt ∀n, j, Υ̂njt ∀n, j, πfnmjt ∀n,m, j, and πxnj,mit ∀n, j,m, i that is solved under
given parameter values and under a set of shocks Ẑnjt and ξ̂njt.
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B.4.1 Algorithm for Exact Solution to the Static Model

To solve the model, we use an initial guess for Υ̂njt together with data on πfmnjt−1 and πxmj,nit−1.
Given these variables, the algorithm is as follows:

• Solve for P̂njt given the guess of Υ̂nj,t and the data on πfmnjt−1 and πxmjnit−1. This step
uses equations (B.18), (B.17) and (B.16).

• Update πfmnjt and πxmj,nit given the solution to (1) and the guess of Υ̂njt using equations
(B.19) and (B.20).

• Solve for Υ̂
′
njt using equation (B.21) given the prices P̂njt obtained in step (1) and the

updated shares πfmnjt and πmi,njt from step (2).

• Check if max|(Υ̂′njt-Υ̂njt)| < δ, where δ is a tolerance parameter that is arbitrarily small.
If not, update the guess of Υ̂njt and repeat steps (1)-(4) until convergence.

B.4.2 Comparison of the Exact and First-Order Solutions

Figure A4 presents a scatterplot of GDP growth rates obtained under the first-order analytical
solution to the global influence matrix in Section 3.1 against the exact solution computed as
in this appendix. The line through the data is the 45-degree line. The GDP growth rates are
computed under the observed shocks, and pooled across countries and years. It is clear that
the first-order approximation is very good in the large majority of instances. The correlation
between the two sets of growth rates is 0.999. Table A7 summarizes the GDP correlations
obtained using GDP growth rates in the linear and exact solutions. The correlations are very
close to each other.

B.5 Autarky Counterfactuals as Limiting Cases

This appendix shows that the three autarky counterfactuals in Section 5.5 can be thought of
as limiting cases as trade costs go to infinity, and elasticities differ from 1 in different ways.
Suppose the production function is CES with the elasticity of substitution between labor and
materials σ, and the elasticity of substitution between intermediate inputs ε:

Ynjt = Znjt

ν 1
σ
F

(
K
αj
njtL

1−αj
njt

)σ−1
σ

+ ν
1
σ
X

(∑
m,i

µ
1
ε
mi,njX

ε−1
ε

mi,njt

) ε
ε−1

σ−1
σ

γj
σ
σ−1

. (B.22)
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Figure A4: Comparison of GDP Growth Rates between First-Order and Exact Solutions
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Notes: This figure displays a scatterplot of the GDP growth rates obtained using the first-order approximation
against the GDP growth rates in the exact solution to the model, pooling countries and years. The line through the
data is the 45-degree line.

Then the first and third autarky counterfactuals correspond to the following limiting cases:

AUT1 :τmnj →∞; ε ↓ 0;σ ↓ 1

AUT3 :τmnj →∞; ε ↓ 1;σ = 1.

In other words, the first autarky counterfactual would obtain as a limiting case if domestic
and foreign intermediates were strong complements, but value added and intermediates had
a substitution elasticity greater than 1. The third counterfactual requires instead that the
intermediate inputs and value added are Cobb-Douglas, whereas the foreign and domestic
intermediates are substitutes.

The AUT2 counterfactual replaces foreign inputs with domestic value added in a sector, and
thus requires domestic value added to be more substitutable with foreign inputs than with
domestic inputs. Thus, the AUT2 scenario cannot be a limiting case of the production function
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Table A7: First-Order and Exact Solutions: Correlations of d lnYnt, ρ = 2.75, ψu = 4

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Baseline (approx.) 0.236 0.363 -0.030 0.567
Exact solution 0.240 0.371 -0.033 0.571

All countries (N. obs. = 406)

Baseline (approx.) 0.124 0.130 -0.104 0.412
Exact solution 0.103 0.107 -0.134 0.402

Notes: This table presents the summary statistics of the correlations of the model d lnYnt in the sample of G7
countries (top panel) and full sample (bottom panel) computed using the linear approximation and the exact solution.
Variable definitions and sources are described in detail in the text.

(B.22). Instead, we would need to posit the following production function:

Ynjt = Znjt

ν 1
σ
F

(Kαj
njtL

1−αj
njt

) ε1−1
ε1 +

∑
m 6=n
i

µ
1
ε1
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ε1−1
ε1
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ε1
ε1−1

σ−1
σ
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1
σ
X

(∑
i

µ
1
ε2
ni,njX

ε2−1
ε2
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) ε2
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σ−1
σ


γj

σ
σ−1

.

(B.23)
That is, domestic value added is bundled with foreign inputs, and then with domestic inputs
with a possibly different elasticity. Note that it is still the case that as σ → 1, ε1 → 1, ε2 → 1,
we obtain the production function used in the baseline analysis. Then, the AUT2 counterfac-
tual is the following limiting case:

AUT2 :τmnj →∞; ε1 ↓ 1;σ = 1.
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Appendix C Robustness and Additional Exercises

This appendix presents various robustness exercises for the results in our static model in
Section 5.

Alternative Supply and Substitution Elasticities Table A8 reports the correlations of
the aggregated non-technology shocks under different assumptions on ρ and ψu. Table A9
reports the correlations in the unweighted (rather than Domar-weighted) shocks under the
different assumptions on ψu.

Table A10 computes the model with both shocks and each shock individually using a higher
Frisch elasticity of 2 to calibrate ψh. This higher elasticity is commonly used in business cycle
models as it increases the response of factor supply to shocks, improving model fit. We find
that comovement is much higher for both G7 and all countries with the higher Frisch elasticity.
The relative importance of technology and non-technology shocks does not change. Notice
that our baseline choice of 0.5 for the Frisch elasticity is more consistent with evidence from
microdata, and still delivers substantial comovement.

Increasing the elasticity of the capital supply curve has a similar effect to increasing the labor
supply elasticity. Table A11 illustrates that a choice of a lower ψu, implying very elastic
utilization, increases comovement. Finally, Table A12 illustrates the fit of the model with
calibrations of ψu that vary by sector using the structural restriction on parameters implied
by our TFP estimation in equation (4.3). While the structural estimates are very noisy (and
not significantly different from our baseline choices of ψu in most cases), the results from the
model and counterfactuals are not qualitatively different from the baseline.

Table A13 presents the results of the shock correlation-transmission decomposition (2.6) the
G7 countries and ρ = 1. Transmission in the baseline model is higher under the lower elasticity,
as would be expected. Figure A5 reports the change in the influence vectors by sector under
ρ = 1.

Alternative Models Table A14 reports the results from a G7 only version of our model
(using the time period 1978-2007, the longest available time period for these countries). Table
A15 reports the results from our baseline model with trade deficits evolving as they do in the
data, solved using the method in Dekle, Eaton, and Kortum (2008). In neither case do the
conclusions regarding model fit or the relative importance of technology vs non-technology
shocks change compared to the baseline.
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Table A8: Correlations in d ln ξnt Summary Statistics

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)

ρ = 2.75
ψu = 4 0.218 0.224 0.060 0.405
ψu = 1.01 0.238 0.303 0.080 0.426
ψju 0.164 0.144 0.002 0.311

ρ = 1
ψu = 4 0.175 0.185 -0.013 0.430
ψu = 1.01 0.199 0.254 0.049 0.421
ψju 0.139 0.175 -0.017 0.264

All countries (N. obs. = 406)

ρ = 2.75
ψu = 4 0.017 0.039 -0.205 0.240
ψu = 1.01 0.020 0.050 -0.219 0.258
ψju 0.015 0.002 -0.181 0.221

ρ = 1
ψu = 4 0.012 0.025 -0.207 0.242
ψu = 1.01 0.014 0.029 -0.217 0.255
ψju 0.020 -0.009 -0.181 0.220

Notes: This table presents the summary statistics of the correlations of d ln ξnt defined in (4.9) in the sample of
G7 countries (top panel) and full sample (bottom panel), for alternative values of ψu. Rows labeled “ψju” report
the results when ψu is inferred from the estimates of ζj using the structural relation implied by (4.2) and the other
calibrated parameters. Variable definitions and sources are described in detail in the text.

Model correlations using the Solow residual Table A16 reports the model correlation
using the Solow residual as technology shock, instead of the utilization-adjusted TFP. In
this model, ψu and ψe are set to infinity, effectively shutting down the utilization and effort
channel. Table A17 shows the decomposition of the correlation into direct effects, the direct
transmission and the multilateral transmission.
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Table A9: Correlations of unweighted shock country averages summary statistics, ρ = 2.75

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)
TFP 0.141 0.248 -0.146 0.323
Non-technology (ψu = 4 ) 0.199 0.244 0.097 0.366
Non-technology (ψu = 1.01) 0.192 0.202 0.033 0.441
Non-technology (ψju) 0.191 0.170 0.056 0.340

All countries (N. obs. = 406)
TFP -0.004 0.017 -0.223 0.227
Non-technology (ψu = 4 ) 0.032 0.053 -0.190 0.260
Non-technology (ψu = 1.01) 0.036 0.055 -0.176 0.266
Non-technology (ψju) 0.014 0.030 -0.214 0.249

Notes: This table presents the summary statistics of the correlations of the unweighted average TFP and non-
technology shocks in the sample of G7 countries (top panel) and full sample (bottom panel) for a Frisch elasticity of
0.5. Rows labeled “ψju” report the results when ψu is inferred from the estimates of ζj using the structural relation
implied by (4.2) and the other calibrated parameters.

Table A10: Model Fit and Counterfactuals under Frisch elasticity=2: Correlations of d lnYnt,
ρ = 2.75, ψu = 4

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Model 0.464 0.532 0.352 0.700

Non-Technology Shocks Only 0.317 0.371 0.165 0.469
Technology Shocks Only 0.149 0.187 -0.073 0.367

All countries (N. obs. = 406)

Data 0.190 0.231 -0.027 0.437
Model 0.189 0.266 -0.095 0.513

Non-Technology Shocks Only 0.038 0.029 -0.190 0.263
Technology Shocks Only 0.018 0.033 -0.205 0.237

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different shocks. Variable definitions and
sources are described in detail in the text.
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Table A11: Model Fit and Counterfactuals under ψu = 1.01: Correlations of d lnYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Model 0.464 0.532 0.352 0.700

Non-Technology Shocks Only 0.317 0.371 0.165 0.469
Technology Shocks Only 0.149 0.187 -0.073 0.367

All countries (N. obs. = 406)

Data 0.190 0.231 -0.027 0.437
Model 0.189 0.266 -0.095 0.513

Non-Technology Shocks Only 0.038 0.029 -0.190 0.263
Technology Shocks Only 0.018 0.033 -0.205 0.237

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different shocks. Variable definitions and
sources are described in detail in the text.
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Table A12: Model Fit and Counterfactuals under Structural ψju: Correlations of d lnYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Model 0.146 0.141 -0.146 0.430

Non-Technology Shocks Only 0.255 0.246 0.064 0.461
Technology Shocks Only 0.123 0.157 -0.095 0.344

All countries (N. obs. = 406)

Data 0.190 0.231 -0.027 0.437
Model 0.084 0.097 -0.152 0.346

Non-Technology Shocks Only 0.011 0.017 -0.196 0.233
Technology Shocks Only 0.001 0.004 -0.216 0.225

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different shocks, when ψju is inferred
from the estimates of ζj using the structural relation implied by (4.2) and the other calibrated parameters. Variable
definitions and sources are described in detail in the text.
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Table A13: Transmission of Shocks, ρ = 1

G-7 countries (N. obs. = 21)

Baseline: 0.246 0.341 0.020 0.564

Decomposition:
Shock Correlation 0.108 0.184 -0.111 0.437
Bilateral Transmission 0.046 0.034 0.026 0.052
Multilateral Transmission 0.092 0.065 0.046 0.134

All countries (N. obs. = 406)

Baseline: 0.119 0.118 -0.128 0.402

Decomposition:
Shock Correlation 0.048 0.054 -0.172 0.300
Bilateral Transmission 0.015 0.008 0.004 0.019
Multilateral Transmission 0.056 0.044 0.010 0.109

Notes: This table presents the decomposition of the transmission of observed shocks into direct effects, the direct
transmission and the multilateral transmission based on the influence vector approximation.

Table A14: Model Fit and Counterfactuals with longer G7+RoW sample: Correlations of d lnYnt,
ρ = 2.75, ψu = 4

Mean Median 25th pctile 75th pctile

Shocks correlations (N. obs. = 21)
d lnZnt 0.018 0.000 -0.078 0.151
d ln ξnt 0.126 0.101 0.004 0.285

d lnYnt correlations (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Model 0.291 0.345 0.124 0.423

Non-Technology Shocks Only 0.135 0.139 0.025 0.260
Technology Shocks Only 0.030 -0.001 -0.044 0.140

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries, for
data from 1978 to 2007, in the data and the model under the different shocks, in a model with G7 countries only and
a rest of the world composite. Variable definitions and sources are described in detail in the text.
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Figure A5: Average Changes in the Influence Vectors: Trade vs. Autarky Models, ρ = 1
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Notes: This figure displays the average change in the direct influence vectors between the baseline model and each
of the autarky models.
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Table A15: Model Fit and Counterfactuals with Deficits: d lnYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)
Data 0.358 0.337 0.242 0.565
Model 0.238 0.369 -0.036 0.559

Non-Technology Shocks Only 0.295 0.332 0.070 0.449
Technology Shocks Only 0.112 0.157 -0.095 0.322

All countries (N. obs. = 406)
Data 0.190 0.231 -0.027 0.437
Model 0.103 0.109 -0.132 0.409

Non-Technology Shocks Only 0.021 0.011 -0.199 0.270
Technology Shocks Only 0.014 0.031 -0.209 0.226

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel) in the data and the model under the different shocks, while allowing for the
aggregate trade deficits to evolve as they do in the data. Variable definitions and sources are described in detail in
the text.

Table A16: Counterfactual with Solow residuals only: d lnYnt, ρ = 2.75

Mean Median 25th pctile 75th pctile

G7 Countries (N. obs. = 21)
Frisch elasticity=0.5 0.033 0.014 -0.144 0.205
Frisch elasticity=2 0.047 0.013 -0.138 0.223

All countries (N. obs. = 406)
Frisch elasticity=0.5 0.040 0.011 -0.189 0.298
Frisch elasticity=2 0.046 0.028 -0.199 0.307

Notes: This table presents the summary statistics of the correlations of d lnYnt in the sample of G7 countries (top
panel) and full sample (bottom panel), when feeding the Solow residual as technology shock in our model, shutting
down utilization and effort. Variable definitions and sources are described in detail in the text.
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Table A17: Transmission of Shocks, for Solow residual only, ρ = 2.75, Frisch=0.5

G-7 countries (N. obs. = 21)

Total: 0.033 0.014 -0.144 0.205

Decomposition:
Shock Correlation 0.019 0.002 -0.168 0.180
Bilateral Transmission 0.007 0.005 0.002 0.006
Multilateral Transmission 0.008 0.007 0.003 0.011

All countries (N. obs. = 406)

Total: 0.040 0.011 -0.189 0.298

Decomposition:
Shock Correlation 0.031 0.012 -0.198 0.286
Bilateral Transmission 0.002 0.001 0.000 0.002
Multilateral Transmission 0.006 0.006 -0.001 0.014

Notes: This table presents the decomposition of the transmission of technology shocks measured as Solow residuals
only into direct effects, the direct transmission and the multilateral transmission based on the influence vector
approximation.
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C.1 Static Counterfactuals: Other Business Cycle Moments

While our focus in this paper is on GDP comovement, we also report the standard deviations
of key variables in our data and model in Table A18. The static model replicates about 30-
40% of the standard deviation of real GDP and consumption and about 15% of the standard
deviation of imports and exports. As we do not permit changes in m or n in this exercise, the
difference in volatility between model and data is unsurprising.

Table A18: Business Cycle Moments: Volatility

Mean Median Mean Median

G7 All countries

Data
Real GDP 0.091 0.094 0.149 0.130
Consumption 0.095 0.107 0.151 0.134
Imports 0.194 0.186 0.246 0.243
Exports 0.159 0.132 0.241 0.235

Model
Real GDP 0.037 0.032 0.048 0.039
Consumption 0.037 0.032 0.048 0.039
Imports 0.033 0.025 0.042 0.035
Exports 0.035 0.030 0.046 0.038

Notes: This table presents the average standard deviation of the log of various variables for the data and the model
for the static counterfactual.

C.2 The Trade-Comovement Relation

Table A19 reports the results of running the “standard” trade-comovement regression in our
data and the static model. This is a regression of bilateral real GDP correlation on a measure
of bilateral trade intensity. A long literature following Frankel and Rose (1998) tries to
understand why economies that trade more display higher GDP comovement in the data.
Vertical linkages have been suggested as an explanation for the trade-comovement puzzle in
a number of papers (see for instance Kose and Yi (2006), di Giovanni and Levchenko (2010)
and Johnson (2014)). Quantitatively, however, models have trouble generating even the same
order of magnitude as the empirical relationship (model coefficients are often <10% of their
empirical counterparts). Our model with just the static network linkages obtains the same
order of magnitude of this relationship as in the data. The coefficients in the model are about
55% of their empirical counterparts.
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Table A19: The Trade-Comovement Relation

Dep. Var: Bilateral GDP growth correlation
Data Model Model with n and m

Trade intensity (avg) 0.085***
(0.012)

Trade intensity (1995) 0.086***
(0.011)

Model trade intensity (avg) 0.047*** 0.089***
(0.010) (0.011)

Model trade intensity (1995) 0.047*** 0.089***
(0.010) (0.011)

N 406 406 406 406 406 406

Notes: This table presents the results of a regression of bilateral GDP growth correlation on trade intensity for the
data (first panel), the baseline static model (second panel) and the static model with employment and capital growth
from the data (third panel). Trade intensity is defined as the sum of bilateral flows over the sum of the two countries’
GDPs. The first row uses the average trade intensity over the 1995-2007 period, while the second row uses the initial
intensity.
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