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1. Introduction

Why do some industries become more productive over time? One explanation is that �rms

adopt new and better methods of production. This can happen because �rms learn by doing or

because �rms are exposed to new and better methods of production. Examples of the former

range from the low-tech sewing machine operator at an apparel �rm to the high-tech process of

increasing yields on silicon chip production. An example of the latter is the set of manufactur-

ing practices known as \lean production." U.S. manufacturers, initially auto producers but later

others, adopted these methods after observing Japanese success. In both the learning-by-doing

and the learning-by-watching cases, �rm productivity increases and with that comes increases in

industry productivity. We refer to this as the real productivity case, and we view it as an uplifting

explanation of the mechanism for productivity increases. After all, there are no obvious bounds

on learning and ingenuity. From a more analytic viewpoint, modeling the real productivity case

is relatively straightforward, in part because this is a story whose essence can be captured with a

representative �rm model.

There is another explanation for increased industry productivity, and it is a bit less cheery and a

bit more cutthroat. This is the idea that in open markets, some �rms thrive while others disappear.

There are, within an industry, winners and losers. As �rms that are especially well suited to an

industry expand and mis�ts contract or exit, industry productivity increases. Conversely, industry

productivity is hindered when �rms are sheltered from the harsh realities of the marketplace. An

example of this is an explanation given by the Economist1 for Japan's recent and long economic

We would like to thank seminar participants at Stanford University, Harvard University, UC-San Diego, Uni-
versity of North Carolina, and NBER for helpful suggestions. Pat Bajari, Susanto Basu, Roger Gordon, Elhanan
Helpman, Peter Klenow, Ariel Pakes, and Valery Ramey also provided especially helpful suggestions. Marc Melitz
and Wendy Petropoulos provided splendid research assistance. We are grateful to the Russell Sage Foundation for
support.

1 See the June 20, 1998 issue containing the article \Japan's Economic Plight."
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downturn. The Economist, echoing arguments made by many others, suggested that Japan's poor

economic performance was, at least in part, because of a Japanese aversion to "outright failure"of

�rms. Rather, there exists a corporate culture more willing to tolerate low returns. In today's

more global economy, this culture is more di�cult to maintain and has contributed, the Economist

claimed, to the recent poor performance of the Japanese economy while other industrial economies

continue to boom. The notion that ine�cient �rms can perhaps survive in a protected economy

but will perish in a more competitive environment is not a new idea. Rather, it is an immediate

implication of Ricardo's 1817 theory of comparative advantage and specialization. This process

of industry rationalization might be expected to lead to increased industry productivity, and we

refer to this story as the rationalization case. From an analytic viewpoint, the rationalization case

requires explicitly modeling �rm heterogeneity, since the representative �rm framework cannot

adequately capture the evolutionary process in which some �rms thrive while others lag.

The �rst goal of the paper is to determine, in one speci�c instance, the relative applicabil-

ity of the real productivity and rationalization cases. The degree to which these non-mutually

exclusive explanations characterize productivity growth matters for at least three reasons. First,

understanding what underlies changes in industry-level productivity is essential to appropriate

productivity-related policymaking. Policies which might either promote or hinder productivity in

the real productivity case often have di�erent impacts in the rationalization case. For example, a

policy that provided infant industry subsidies might enhance productivity in the real productivity

case, but if new and smaller �rms are the least productive and most likely to fail, such subsidies

might harm industry productivity in the rationalization case. Further, as productivity growth is

an integral component to economic growth, simply understanding from whence it derives seems

important.

Second, the real productivity case and the rationalization case have very di�erent implications

for factor markets. If, for example, productivity increases derive primarily from the real produc-

tivity case, worker displacement is a non-issue. In its pure form, this case has all �rms becoming

more productive. The rationalization case, on the other hand, would entail substantial worker

displacement. With these di�erences in factor market implications come di�erences in the politics

of productivity change.

Third, the real productivity case and the rationalization case have di�erent implications for

long run growth. In the real productivity case, industries become more productive because �rms

become more productive. This process is not bounded in any obvious way; a good idea can follow
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good idea after good idea. Ignoring entry, in the rationalization case, an industry cannot become

more productive than the single most productive incumbent �rm. That is, the \frontier" is reached

when all output is manufactured by the most productive �rm. Thereafter productivity is constant.

While each of these explanations is likely to play a role in explaining changes in productivity growth,

measuring the empirical importance of the two cases may help us better understand the long run

growth prospects of an industry.

Economic models in which productivity growth matters are more informative if they are broadly

consistent with the data. Ex ante, it is not clear which story, if either, is most consistent with

industry data. Therefore, it is not generally clear what kind of model should be brought to industry

data. Many models of �rm behavior are models with homogeneous �rms or, equivalently, a single

representative �rm. If the real productivity case is empirically most relevant, homogeneous �rm

models may be appropriate. On the other hand, if changes in productivity originate mostly from

industry rationalization and the shu�ing of output from less to more productive �rms, a model

with heterogeneous �rms is required. In order to determine the relative applicability of either case,

an economic model consistent with both homogeneous and heterogeneous �rms must be taken to

the data; only then is it possible to evaluate the extent to which either hypothesis has support in

the data.

The second goal of this paper is to contribute to the literature on the estimation of productivity.

At the industry-level, the real productivity and rationalization cases are potentially observation-

ally equivalent. For this reason, we turn to �rm-level data. However, empirically distinguishing

between the two cases requires more than just �rm-level data. It requires estimates of �rm-level

productivity and its dynamics that do not su�er from the standard simultaneity problem induced

by the contemporaneous correlation between input levels and the productivity shock (see Marschak

and Andrews (1944)). In this paper, we extend Olley and Pakes (1996) in ways which alleviate

this problem of contemporaneous correlation, and we show that these extensions can be important

for inferences drawn from estimates of productivity. In addition, we suggest that the Olley-Pakes

idea of using investment to control for the simultaneity between inputs and the productivity shock

can be extended to using intermediate inputs like electricity or fuels. Using intermediate inputs to

proxy for productivity shocks has two advantages. It provides a simpler link between the estimation

strategy and the economic theory, and, in industries which have pronounced adjustment costs of

capital, it avoids the potential truncation from estimation of large numbers �rms which report zero

investment (because they adjust on an infrequent basis.)
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We also show that it can be empirically important to avoid using ordinary least squares (OLS)

or �xed e�ects estimators when estimating �rm-level productivity. We �nd that OLS and Fixed

E�ects lead to parameter estimates which are signi�cantly di�erent both in economic magnitude

and in a statistical sense from estimates obtained under less restrictive assumptions. In addition,

we �nd that it is common for the OLS framework to overestimate productivity changes by 10% of

industry value-added. We do note, however, that OLS does consistently predict the direction of

productivity movements. This result suggests that one might avoid the additional complications

associated with estimating parameters of the more 
exible framework if the objective is simply to

sign industry-level productivity changes.

Finally, we highlight when the methods of Olley and Pakes are applicable and when they are

not. In so doing, we illustrate how several commonly used approaches to estimating productivity

can be viewed under a single unifying framework.

The third goal of this paper is markedly more narrow. This paper provides evidence on what

happened to the distributions of �rm-level productivity in Chile. As such, we contribute to a

literature on �rm-level productivity in developing countries { some of which is reviewed in the

next section. Much of the existing literature, some of it using the same Chilean data we use, has

focused on trying to investigate the causal link between trade liberalization and productivity. We

do not attempt to address this link in this paper. Rather, we focus on documenting the changes

in distributions of productivity without attempting to attribute these changes to correlates in

the economic environment following a large liberalization. We avoid the issue of whether the

liberalization that occurred in Chile per se was responsible for the changes in productivity for two

reasons. First, as documented in Levinsohn (1998), there are good reasons to believe that the impact

of trade policy might have been dominated by the overwhelming macroeconomic in
uences in Chile

over the period of the data. Second, the data span only the period following the liberalization.

With data before and after the liberalization, researchers stand a �ghting chance of identifying the

impact of the liberalization on productivity. Without it, though, we feel the exercise is not likely

to be persuasive.

We proceed by brie
y and selectively reviewing some of the relevant literatures in the next

section. In the third section, we turn our attention to the details of estimating �rm-level produc-

tivity. There, we review some previous approaches to estimating productivity, provide a general

framework for estimation, and �nally explore some speci�c structural models and their resulting

estimators. Section 4 provides some background on the Chilean experience and then describes the
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data. Section 5 gives the details of the estimation procedure and presents results. In section 6, we

investigate the dynamics of productivity, while section 7 concludes.

2. The Literatures

Firm-level productivity dynamics is a broad topic, and an adequate review of that topic is well

beyond the scope of this section. Rather, we selectively focus on a handful of studies most closely

related to our work. Much of the work in this area is either mostly or purely empirical. We begin

our review with this literature, and then review some of the relevant theoretic literature.

Empirical Studies of Firm-Level Productivity Dynamics

A natural question is \What about productivity dynamics in the United States?" Using U.S. data

and empirical strategies quite di�erent from ours, this question was tackled by Bailey, Hulten, and

Campbell (1992), and they concluded that:

Some industries in our sample have achieved huge improvements in productivity; in others

productivity has fallen sharply. There are high-productivity entrants and low-productivity

exiters, plants that move up rapidly in the productivity distribution and plants that move

down rapidly. Many plants stay put in the distribution. Both in level of and rate of change

in productivity, plants manifest signi�cant di�erences. 2

Most relevant to our study, Bailey et. al. investigate what was underlying changes in industry-

level productivity, and they found that the relative empirical importance of the rationalization

versus real productivity varies over the business cycle. Overall, their results suggest that the real

productivity e�ect is quantitatively more important than the rationalization e�ect{ the former

is frequently about three or four times as large as the latter. A similar analysis of plant-level

productivity was conducted using Israeli data by Griliches and Regev (1995).

There are also several studies of plant-level productivity resulting from an in
uential research

project organized by Mark Roberts and James Tybout. That project is summarized in Roberts

and Tybout (1996). That volume contains several papers that are closely related to ours in terms

of issues, albeit quite di�erent in terms of methodologies. The paper most closely related to our

work is Lui and Tybout (1996). In that paper, the authors examined plant-level productivity for

�rms in Columbia and Chile. Their results using the Chilean data reported, among other things,

2 In an exceptionally entertaining (by the standards of economics, anyway) discussion of Bailey et al. (1992), Tim
Bresnahan noted that the authors \did report all 6000 numbers."
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that: i) exiting plants are usually, but not always, less e�cient than incumbents and this gap closes

as ine�cient but large �rms are \propped up" and remain in the market; ii) there is a role for the

reallocation of productivity but that the quantitative impact of reallocating productivity across

incumbent �rms is \modest" in the Chilean context.

The role �rm turnover plays in changes in industry-level productivity is investigated using

Taiwanese data in Aw, Chen, and Roberts (1998). They �nd that \the productivity di�erential

between entering and exiting �rms is an important source of industry level productivity growth in

Taiwanese manufacturing." In their study, productivity is computed using index number methods.

It is not estimated econometrically.

There are also several studies of how international trade impacts productivity. Some of this

work is predicated on an economic environment in which �rms are imperfectly competitive. See,

for example, Harrison (1994). Our results do not speak to this literature for two reasons. First,

our framework is one in which �rms take prices as given. Second, we do not attempt to identify

whether the changes in productivity that we document are attributable to changes in international

competition (via trade policy or exchange rate shifts) or to changes in other macroeconomic vari-

ables. For an example of work that does exactly this, using the same data used in this paper, see

Pavcnik (1997).

A paper closely related to ours is Olley and Pakes (1996). They examine productivity dynamics

in the U.S. telecommunications equipment industry and, in the process, develop the methodology

on which we build. (We discuss the methodological aspects of this work below and concentrate

here on their results.) Olley and Pakes investigate the contemporaneous covariance between output

and productivity. As such, they examine something akin to our rationalization case. While the

discussion is about more productive �rms becoming bigger, the empirical observation is one about

more productive �rms being bigger. They interpret their �ndings as supporting the empirical im-

portance of the rationalization case to explaining changes in productivity in the telecommunications

equipment industry.

Theoretical Models of Firm-Level Productivity Dynamics

Models which can capture stories in which some �rms thrive, others struggle, and entry and exit

simultaneously occur are related to our work. These models, like our rationalization case, clearly

require �rm heterogeneity. Examples of models that explicitly incorporate the sort of dynamics

that are consistent with our rationalization case include those by Jovanovic (1982), Hopenhayn and
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Rogerson (1993), and Hopenhayn (1992). Each of these are models in which �rms are price takers

for both inputs and output. They are brie
y discussed in turn.

Jovanovic provides a theory of industry evolution which is based on �rm heterogeneity and

self-selection. Each �rm has some true underlying cost of production, c. This parameter is a draw

from the population distribution of costs, which is assumed to be N(c; �2c). The cost distribution

is known to the �rm, but the �rm does not know its own cost parameter. Each period the �rm's

unit cost of production, cit, 
uctuates around ci randomly according to

cit = ci + �it;

where �it isN(0; �2�). The �rm observes cit each period, and since �it is i.i.d. with �nite variance, the

�rm learns more and more about its underlying cost using (1=T
PT

t=1 cit) to consistently estimate

its cost. At the start of every period a �rm decides whether to exit or stay based upon its current

cost information. With a little luck, if the �rm is a low cost �rm, it will see high pro�t realizations

after entering and continue to produce as it becomes more and more clear to the �rm that it is

pro�table. If the �rm is a high cost �rm, then it may not wait long before exiting the industry.

The evolution of the economy is then driven by these optimizing agents' learning and selection

decisions.3

Jovanovic's model is not easily taken directly to the data. His model is based on costs, whereas

our empirical work is focused on productivity. Viewing productivity as the dual of costs, though,

would allow us to work with Jovanovic's model. More problematic is the notion that in Jovanovic's

model, a �rm's decision is based on its entire history of productivity draws. A more tractable model

would restrict this dependence to a period shorter than the length of the observed data series.

Hopenhayn (1992) proposes a somewhat di�erent model of industry evolution. Like Jovanovic,

Hopenhayn's model has both �rm-level heterogeneity and price-taking behavior in a dynamic com-

petitive framework. In this model, �rms are subject to a random productivity shock every period.

This productivity shock follows a �rst-order Markov process that is independent across �rms.4 In

addition, the distribution of future productivity is (stochastically) increasing in this period's pro-

ductivity. Hence, high productivity �rms expect to remain high productivity �rms. Surviving �rms

pay a �xed cost each period, then observe their productivity shock, and �nally decide on a level of

3 Note that the probability that a low cost �rm will exit is non-zero because it may get a series of large cost
realizations (large �'s), and will think it is really a high cost �rm.

4 Restricting the dependence to the previous period yields more degrees of freedom when estimation takes place.
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output for that period. Entrants have to pay a sunk cost prior to entry, after which they draw from

a common underlying distribution of productivity shocks and then choose output. Exiting �rms

earn zero pro�ts but do not have to pay the �xed cost. From this basic framework, Hopenhayn

derives equilibrium conditions that imply predictions about the productivities of entrants, incum-

bents, and exiters. He shows, for example, that in equilibrium low productivity �rms are more

likely to exit and that older cohorts of �rms will be more productive than younger cohorts.

Hopenhayn and Rogerson (1993) propose a variant of this model of industry evolution. They

use it to evaluate the aggregate implications of government policies which make it costly for �rms

to adjust their labor. To do so, they develop an equilibrium model of the reallocation process of

labor across �rms using a value function which explicitly includes an adjustment cost for labor. The

equilibrium notion employed by Hopenhayn and Rogerson implies that the state of the economy is

characterized by the distribution of state variables for operating �rms. At time t, this probability

distribution is given by P t(!; k), where ! denotes productivity, and k is a state variable such

as capital and/or labor.5 The transition operator that takes the economy's distribution of state

variables from time t to time t+1 is given by the operator T , so P t+1(!; k) = TP t(!; k). Hopenhayn

and Rogerson prove the existence of an equilibrium in their economy that has entry, exit, and

the growth and decline of �rms over time. An empirical implication of their model is that the

distribution of state variables remains �xed over time in equilibrium.

Two other popular frameworks that can be used to model dynamic patterns of �rm-level pro-

ductivity are Ericson and Pakes (1995) and the X-ine�ciency models. Ericson and Pakes (1995)

is a dynamic model of a small, imperfectly competitive industry with a stochastic process of ac-

cumulation for the state variable. X-ine�ciency models start from the primitive that there is an

e�cient production technology, and �rms are either on it or below it, but never above it. In our

estimation we do not account for the features of the Ericson and Pakes model, nor do we estimate

a production frontier (we estimate the average production technology,) so these models are less

tightly related to our own work than are those previously discussed.

Models that might capture the true productivity case need not place such emphasis on �rm

heterogeneity. If all �rms become more productive over time, a representative �rm framework may

su�ce. There are several models in which �rm productivity increases. Some of the traditional

approaches to growth theory provide examples. Increases in productivity (and hence growth) may

result from simple learning by doing (e.g. Arrow (1962) and more recently Romer (1986)), from

5 In their model, labor is a state variable. (Capital is not.) We can alternatively write the distribution as
P t(!; k; ls) if we �nd that skilled labor is a state variable for some industries.
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investment in research and development (e.g. the models outlined in Griliches (1998)), or via the

conduit of international trade (e.g. Grossman and Helpman (1991)).

3. Estimation of Productivity

The empirical work in this paper focuses �rst on estimating productivity and then on decomposing

the changes in productivity. In this section, we describe how the estimation is done. We �rst review

several approaches to estimating �rm-level productivity as this provides a context to our estimating

strategy. We then describe our general estimation strategy. Finally, we relate speci�c assumptions

on �rm-level behavior to the implementation of the estimation strategy. Those wishing to skip the

review can proceed directly to the next sub-section without a loss in continuity.

Previous Approaches to Estimating Productivity with Firm-Level Data

In this sub-section we describe some previous estimators for the distribution of �rm-level pro-

ductivity in a competitive environment. Our goal is to avoid making assumptions that rule out,

a priori, important forms of �rm-level heterogeneity across establishments and over time. We do

so for both economic and econometric reasons. First, one of the most striking features of recent

studies using detailed �rm-level data is the amount of observed heterogeneity in outcomes across

�rms. Summary statistics of output conditional on inputs contain signi�cant variability across

�rms, as do both growth rates and entry and exit probabilities.6 It is important, then, that the es-

timation strategy yield estimates that allow the researcher to investigate the economic implications

of such heterogeneity.7 Second, we know that econometric properties (in particular consistency) of

our estimator of the distribution function for productivity are likely to be lost under assumptions

ruling out this observed, dynamic, �rm-level heterogeneity. For example, the ordinary least squares

and �xed e�ects estimators place restrictions on �rm-level dynamics that are too restrictive for our

data, and we show later that estimates of �rm-level productivity from these models can be rejected

in favor of models that allow �rm-level productivity to be both serially and contemporaneously

correlated with inputs.

Our paper is in the vein of recent work which allows for more systematic di�erences across �rms

at any given time and for di�erences in �rm outcome paths over time (see, e.g., Ericson and Pakes

6 Recent well-known papers with these observations include Dunne, Roberts, and Samuelson (1988),Davis and
Haltiwanger (1990),Bailey et al. (1992), and the literature cited therein.

7 In particular, we wish to investigate the roles of real productivity and rationalization in industry-level produc-
tivity changes.
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(1995),Olley and Pakes (1996),Roberts and Tybout (1997)). We start (as do these authors) by

focusing on the �rm. In a discrete time model, the expected total discounted pro�ts for �rm i can

be written as

�1(yi1; xi1; �i1; �) + E[

1X
t=2

�t�1�t(yit; xit; �it; �)]; (1)

where �t(�) is the pro�t function for period t, and � is the discount rate. \Sub"-functions of

the pro�t function, such as the �rm production or value-added function, are the typical basis for

estimation. In these cases yit is a measure of output and xit is a vector of inputs for period t. xit

includes both inputs that are easily adjusted (e.g. materials or labor, in many cases), and inputs

whose stock evolves over time in response to future beliefs (e.g. investment to build capital.) A

sequence of errors, f�itg
1

t=1, indexed both by �rm and time, is introduced into these models to

account for di�erences between the model's predictions and observed outcomes. The standard

interpretation assigned to this sequence of residuals is that it represents (or, more precisely in

our case, contains) a term characterizing �rm productivity. We then use the empirical distribution

function of these residuals to characterize what happens to productivity over time. More speci�cally,

we estimate a value added production function of the form

yit = f(xit; �it; �); (2)

where � is a vector of parameter values and �it measures the di�erence between expected and

observed output (conditional on the inputs we observe).

Our primary concern is with the potential contemporaneous correlation both within �rm i and

across time t between �it and xit in the �rm-speci�c sequences fxit; �itg
1

t=1. Given the natural

dependence of the �rm's discounted future pro�ts on both xit and �it in (1), this correlation seems

plausible, and we are not the �rst to point out this potential problem. Marschak and Andrews

(1944) argue that the problem arises when variable input demands are correlated with productivity

and productivity is not observed. They suggest that this simultaneity can be particularly acute for

inputs that adjust most rapidly to the productivity realization. There is also reason to believe that

�rms with better sequences of productivity realizations will, over time, respond to these \good"

realizations by investing and accumulating assets that are costly to adjust rapidly. Alternatively,

simultaneity may occur in the time dimension when input decisions are based on serially correlated

errors and there are costs to making large immediate adjustments to inputs.

The two most commonly used methods for estimating �rm-level productivity, OLS and �xed

e�ects, impose strict restrictions on the sequences fxit; �itg
1

t=1. OLS assumes that productivity is
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uncorrelated with input choices across both �rms and time. The �xed e�ects estimator is similarly

restrictive. It assumes that �rm-level productivity is constant over time, so for any �rm i,

E[�i;t] = E[�i;t0] = ki;

for any two time periods (t; t0) and some constant ki. The lack of dynamics in both frameworks

is hard to reconcile with observations from �rm-level data sets. In the data we see apparently

similar �rms taking very di�erent actions. Some �rms increase their use of labor and capital over

time, others decrease their use over time, and some �rms enter and others exit the market. All of

these decisions must be made in accordance with �rm beliefs about present and future pro�ts, and

these are a�ected by present and future expected productivity realizations. Hence, the variety of

patterns across apparently similar �rms suggests that the unobserved productivity term follows a

more general stochastic process than that speci�ed by OLS or �xed e�ects.

An alternative approach is to model the sequence fxit; �itg
1

t=1 as history dependent. Here, the

previous period's productivity can a�ect future productivity levels, and hence a�ect expectations

about future productivity levels. Instrumental variables is the standard approach to solving the

problem of correlation between inputs and the error term. However, it is di�cult to �nd instruments

at the �rm-level for capital, skilled and unskilled labor; most variables correlated with inputs will

likely be correlated with the productivity shock, and this will frustrate e�orts to obtain consistent

estimates of the production function parameters. One oft-used solution to the unavailability of

appropriate instruments is to adopt a �xed e�ects estimator, but this brings with it the problems

already discussed.

It is possible to directly specify the parametric process that the productivity shock follows.

However, even if we are willing to characterize the dynamic sequence fxit; �itg
1

t=1 as a paramet-

ric process and want only to estimate the parameters of this process, we still have a signi�cant

problem. By itself, knowledge of the process (up to the parameters) is not enough to control for

the simultaneity between �it and xit over time because the process fxit; �itg
1

t=1 follows a path that

depends upon its starting values (xi1; �i1). This is an initial conditions problem (see Heckman

(1981) and Pakes (1996)), where estimation of parameters for a stochastic process that depends

upon time-ordered outcomes is impossible unless the process is \initialized."

One solution is to initialize the observed process by assuming the history is exogenous, i.e.

that fxit; �itg
T�1
t=1 is independent of fxit; �itg

1

t=T , where T is the �rst date a �rm is observed.

Another solution is to estimate a �xed entry-time e�ect for each �rm. However, this solution

produces consistent estimates only as the ratio (observations/�rm) gets large. This estimator is
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not consistent as just the number of �rms increases because each extra �rm brings with it an extra

�xed e�ect parameter to estimate. A third solution splits the sample into two parts, the �rst part

of which is used to estimate starting values. Roberts and Tybout (1997) take this approach with

a panel from Colombia that is 10 years in length. Using the �rst 3 years they estimate starting

values for continuing �rms, and then initialize their assumed stochastic process accordingly. The

second half of the data set is then used to look for determinants of �rms' decisions to enter the

export market in Columbia.

Our Approach

Our approach uses a recently proposed idea by Olley and Pakes (1996). (See also Pakes (1996).)

They suggest including in the estimation equation a proxy for the productivity shock to control for

the part of the error correlated with inputs. Using the dynamic program of their �rm, Olley and

Pakes show that under certain conditions investment can be used as a proxy for (i.e. can be used

to condition on) the productivity shock. If the distribution of next period's productivity shock

is stochastically increasing in this period's productivity shock, the economic story that makes

investment a valid proxy is straightforward; a �rm that realizes a large productivity shock this

period will invest more than an identical �rm with a smaller productivity shock this period because

the more productive �rm anticipates doing better than the less productive �rm both in the current

period and in future periods.

In the next section we show how a simple insight about the value-added production function can

be used to amend the recently developed techniques of Olley and Pakes. Like the Olley and Pakes

estimator, our new estimator permits heterogeneity in productivity across �rms and over time. A

possible advantage of our estimator is that it does not require the complicated derivation needed

to show that investment is a valid proxy for productivity (see Pakes (1996)). Another advantage

for our data set is that investment is frequently observed to be zero. This is true for one-third of

our �rm/year observations. No proxy is then available for these �rm/year observations, making

it necessary to drop them from the estimation routine.8 Our proxies are generally available for

almost all of the �rm/year observations, obviating the need to estimate the value-added production

function with only investing �rms (and avoiding a potential selection problem.)9 We next discuss

8 See Olley and Pakes (1996) for a detailed explanation of this problem. Brie
y, it arises because productivity is
not a smooth function of investment at zero investment levels (i.e. it cannot be inverted at zero investment, but this
invertibility is necessary for the proxy to be valid.)

9 Olley and Pakes (1996) are forced to select on positive investment and this truncates their sample size by about
8 percent.
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our ideas for proxies and the estimators they generate.

A General Framework

Our empirical goal is to estimate productivity at the �rm-level without imposing unreasonable

stochastic properties on the sequence of inputs and errors fxit; �itg
1
t=1. We motivate the restrictions

that we will place on this sequence by using the value function of the �rm. This approach has at

least two advantages. First, it allows us to determine the conditions under which the observed

sequence of input decisions and errors, fxit; �itg
1

t=1, follows a path that is consistent with di�erent

dynamic equilibrium notions.10 Second, by specifying our behavioral assumptions, we are able

to link our econometric methods with an underlying behavioral framework. This, in turn, allows

us to evaluate the importance of alternative modeling assumptions and ensuing implications. It

also permits us to extend our results to some available theoretical models of �rm dynamics and

investigate which of these stories seem compatible with di�erent Chilean industries.

We begin our discussion with the state variables of the �rm in our framework. These are capital

kt and productivity !t. (Notationally, ! is a component of �, a distinction which is discussed

below.) We assume kt evolves in a deterministic manner according to

kt = (1� �)kt�1 + it (3)

where it is investment and � denotes the depreciation rate. Investment must enter directly into this

period's production technology for this condition to hold true. Productivity is assumed to follow a

�rst-order Markov process, so knowledge of this period's realization generates a distribution known

to the �rm for the possible values of next period's productivity realization. We denote this Markov

transition matrix as P (�j!).

The value function vt(�) (or Bellman) for a �rm in our model is given by:

vt(kt�1; !t�1) = max
i

Z
!0

[�t(kt(i); !
0)� ct(i) + �vt+1(kt(i); !

0)]dP (!0j!t�1); (4)

where

�t(kt(i); !)� max
ls;lu;m

[ptq(l
s; lu; m; kt(i); !)� Ct(l

s; lu; m)] ;

t indexes periods (which are years in this data set), and for ease of exposition we suppress the

�rm-level notation. Time t indexes state variables that are taken as given by the �rm, including

10 See, for example, Hopenhayn (1992) or Bailey et al. (1992).
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input and output prices (pt) and other macroeconomic variables. the (output) production function

is given by q(�), and ct(i) and Ct(� ) are the costs associated with investment and variable input

choices respectively.

The �rm decision-making process is summarized as follows. Each �rm begins each period t by

choosing a level of investment, and after doing so each �rm observes its productivity. Given kt and

!t, and faced with output price pt and input prices, the �rm then chooses the levels of the variable

factors (lst ; l
u
t ; mt) to maximize ptq(�)�Ct(�): These variable factors are skilled and unskilled labor,

ls and lu, and intermediate inputs, m.

Our empirical strategy will focus on the �rms' value-added production functions. Because we

are working with a value-added production function, we will be estimating the relationship between

labor and capital and an output number that is adjusted for the cost of the intermediate inputs.

Our value-added function has as arguments skilled and unskilled labor, capital, and the residual,

and we write this function as y � f(ls; lu; k; �). A �rst-order approximation to this function is

yt = �0 + �kkt + �sl
s
t + �ul

u
t + !t + �t; (5)

where yt is the log of output (measured as value-added) in year t, kt is the log of the plant's capital

stock, lst is the log of skilled labor input, lut is the log of the unskilled labor input, and the error �t

from (2) is assumed to be additive in two other unobservables, !t and �t, so �t = !t+�t. !t is the

plant's productivity, and �t is a mean zero error that may either be measurement error or a shock

to productivity that is unexpected and to which labor and other variable inputs do not respond.

The key di�erence between !t and �t is that the former is a state variable, and hence impacts the

�rm's decision rules, while the latter has no impact on the �rm's decisions. Again, our exercise is

de�ned by our desire to leave the stochastic properties of !t reasonably general when we estimate

(�sl ; �
u
l ; �k; P (!));

where P (!) is the distribution of productivity both across �rms and over time.

Using (5), the endogeneity of inputs problem is readily illustrated. If the labor inputs chosen

at time t respond to observed productivity !t, then the variable input choices in year t will be

positively correlated with !t, leading to upwardly biased estimates of the elasticity of output with

respect to labor. The capital coe�cient may su�er from the same problem; capital is variable over

time via depreciation and changes in investment, and the maximization problem from (4) solved

with serial correlation in f!tg
1

t=1 may lead to a sequence fktg
1

t=1 that also exhibits serial correlation.

To make matters more di�cult, capital and labor levels are highly correlated both within and across
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�rms. Econometrically, this means that a positive bias in one coe�cient can transmit a negative

bias to the other coe�cient since they are estimated simultaneously. The di�culty of signing these

biases then makes it hard to sign bias associated with the distribution of productivity.11

As noted above, a major innovation in Olley and Pakes (1996) is their idea of using a proxy

to solve this simultaneity problem. They work out the conditions under which investment is an

increasing function of productivity in a Bellman equation similar to (4). They assume that period

t's investment responds to period t's productivity shock, and then show that an optimizing �rm

will always respond to a large !t by investing large amounts it. Writing investment as a function

of state variables yields

it = it(!t; kt):

For �rms investing positive amounts in period t, investment is shown to be strictly increasing in

productivity, and this means an inverse function exists. Hence, they write !t = (it; kt), and this

function is strictly increasing in it (again, for positive levels of investment.) This function (which

is not known, but which can be estimated) can then be included as a proxy when estimating the

production function from (5). It serves to control for the correlation between the capital and labor

sequences fxtg
1

t=1 and f!tg
1

t=1, the sequence of productivity.

We wish to address the problems associated with traditional estimators (i.e. the OLS and �xed

e�ect estimators). However, we also wish to avoid two possibly signi�cant costs of using �rm-level

investment as a proxy for production. The �rst cost is one of theoretical complexity while the second

one is data-driven. Showing that investment is a valid proxy in the context of the dynamic structural

model is non-trivial (see Pakes (1996).) If one wishes to use a model that di�ers, even slightly, from

that of Olley and Pakes, it becomes necessary to re-investigate the appropriateness of investment as

a proxy for productivity. The proxy that we adopt does not require the complicated derivation that

is used to show investment is a valid proxy, primarily because we assume intermediate input levels

adjust costlessly. We recognize that the value-added production function does not have intermediate

goods as inputs; by de�nition, they have been subtracted out from gross output. This suggests that

any intermediate input which responds to the productivity shock may be a potential candidate to

proxy for productivity. In Appendix I, we show the conditions under which an intermediate input

is a valid proxy.12 The intuition is straightforward: the productivity shock leads to higher marginal

11 For example, if we knew that the labor coe�cient was biased up and the capital coe�cient was consistently
estimated, we would also know that the mean productivity level is biased down.

12 One can show that for the Cobb-Douglas production function and for certain forms of Leontief production
technologies �rms will have intermediate input demand functions that are strictly increasing in the productivity
shock.
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products for capital and labor, and with constant input prices, the �rm will produce more output

to drive down these marginal products. In the process of increasing output, �rms will increase both

their use of fuels and electricity.

The second reason relates to the observables in our data. Investment is zero for one-third of

our �rm/year observations. This empirical regularity suggests that there are adjustment costs to

investment. Were we to stick with the investment proxy, no proxy would be available for these

�rm/year observations. Our proxies are available for almost all of the �rm/year observations,

obviating the need to trim a third of our sample before proceeding with estimation (and avoiding

a potential selection problem.)

Similar to the story with investment above, we can express an intermediate input m as a strictly

increasing function of !. That is:

mt = mt(!t; kt); (6)

and we then invert (6) and express the unobservable productivity as a function of the intermediate

input and capital. Hence,

!t = ht(mt; kt); (7)

and we can proceed by using ht(mt; kt) (which we don't know but can estimate) as our proxy for

productivity.13

This inversion plays a very important role, since it permits us to control for !t. To see how this

is done, substitute (7) into (5) to obtain:

yt = �sl
s
t + �ul

u
t + �t(mt; kt) + �t; (8)

where,

�t(mt; kt) = �0 + �kkt + ht(mt; kt): (9)

Equation (8) is a partially linear model and is estimated using semi-parametric regression methods

discussed in the next section. For now, note that the error term in this equation, �t, is by assumption

uncorrelated with the labor inputs. Therefore, if we can include �t(mt; kt) in the estimation routine,

estimates of coe�cients for skilled and unskilled labor will be consistent. This is the �rst step of

the estimation process.

13 As we mentioned earlier, this is important in our data because many �rms have zero investment, and these �rms
have to be trimmed from the estimation when investment is used as a proxy. In our data, almost every �rm has
a non-zero level electricity usage in every period. This allows us to use the full data set rather than a truncated
sample. See the data section for a more complete discussion.
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We are not done because we have not identi�ed the coe�cient on capital, �k, in (5). From (9),

capital's impact on output, via �k , is not separately identi�ed from capital's impact on intermediate

input usage, since capital also enters the proxy function h(mt; kt). In order to identify the coe�cient

on capital, we rely on the assumption that the expected value of next period's productivity can be

written as a function of observables and productivity this period. To see this, note that we can

rewrite the value of next period's output as

yt+1 = �0 + �sl
s
t+1 + �ul

u
t+1 + �kkt+1 + E[!t+1jIt] + �t+1 + �t+1; (10)

where productivity !t+1 is equal to the sum of two terms, written as

!t+1 = E[!t+1jIt] + �t+1:

The �rst term is the expected value of next period's productivity conditional on this period's

information, It, a vector of the relevant observables and last period's productivity. The second

term is the innovation in productivity. De�ne the function g(It) as

g(It) = �0 +E[!t+1jIt]:

The function g(It) gives, up to an additive constant, the conditional expectation of next period's

productivity, !t+1. Its arguments are chosen to condition out potential correlation between capital

and !t+1.
14 Substituting g(It) into (10) and taking the expected value conditional on kt+1 yields

the moment condition:

E[yt+1 � �sl
s
t+1 � �ul

u
t+1 � �kkt+1 � g(It)jkt+1] =

E[�t+1 + �t+1jkt+1] = 0;
(11)

which equals zero at the true parameter values (kt+1 is uncorrelated with both the innovation in

productivity (�t+1) and (�t+1).)

It is perhaps helpful to note in less technical terms what this moment condition represents. The

expectation of output less inputs equals the error, or the productivity shock plus another additive

error. This error cannot be used as the basis for a moment condition that will identify �k, since

the productivity shock is not orthogonal to capital. We can solve for an error term, (�t+1 + �t+1),

that is uncorrelated with capital by conditioning out the expectation of !t+1. It is the inclusion

of the function g(It) which controls for this expectation and allows for identi�cation of the capital

coe�cient (via the restriction from (11).) The �nal step of the estimation procedure then uses

the production function estimates to compute the residuals. The empirical distribution function of

these residuals is then used to approximate the true distribution of productivity P (!).

14 For example, if !t follows a �rst-order Markov process, g(It) = g(!t) = �0 +E[!t+1j!t].
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Speci�c Theoretical Structures and Their Resulting Estimators

In this section we consider di�erent primitives for our model. In particular, we focus on what

is known by the �rm when it makes decisions and how this sequencing a�ects the estimation

routine. Because the timing of the �rm's decisions within the periodicity of the data is inherently

unobservable to the econometrician, we outline some of the links between modeling assumptions

and ensuing estimation issues. We examine the primitive of the timing of the �rm's exit decision,

especially with respect to when the �rm sees the productivity shock. We then show when it is

necessary to control for a selection bias that may arise when �rms observe their productivity before

choosing to stay or exit.

We assume that productivity follows a �rst-order Markov process. This means that our function

for g(�) (which we will estimate non-parametrically) takes the form

g(It) = �0 +

Z
!t+1

!t+1dP (!t+1j!t) = g(!t):

Of course, we do not observe !t directly. We do observe kt and in the �rst stage we estimate �t. We

also know from (9) that �t � �kkt = �0 + !t. Given a value for �k, we can construct an estimator

of !t (up to the constant �0) by writing g(�) as g(�t � �kkt). We can then use a non-parametric

approximation to this function to derive a moment condition (equation (11)) which will separate

out capital's contribution to output from productivity's contribution to output.15

Next we discuss a selection problem that may arise if �rms observe productivity before they

choose to stay or exit, and we show that the proper choice of g(�) can alleviate this problem. In our

framework, a �rm will choose to exit if the sell-o� value of its capital is greater than the present

and future expected pro�ts of staying in business. Formally, a control problem generates the exit

rule, and that rule can be expressed as an indicator function �t which is equal to one if the �rm

continues to operate and zero if it shuts down. Hence,

�t =

(
1; if !t � !�t (�);

0; otherwise.
(12)

15 We can easily change our primitive to allow ! to follow a kth-order Markov process, i.e. E[!t+1j!t; !t�1; : : : ; !1] =
E[!t+1j!t; !t�1; : : : ; !t�k]; (which obviously nests the �rst-order process.) With this new primitive we write g(�) as

g(It) = �0 +

Z
!
t+1

!t+1dP (!t+1j!t; !t1 ; : : : ; !t�k) = g(!t; !t�1; : : : ; !t�k):

In terms of observables, we then write g(�) as g(�t � �kkt; �t�1 � �kkt�1; : : : ; �t�k � �kkt�k):
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The function !�t gives the value of the idiosyncratic productivity variable that makes exit optimal.

This value is endogenously determined in the equilibrium and is known by the �rm, but not by the

econometrician.

If the di�erence between the value function and the sell-o� value of the �rm is increasing in

capital, then !�t is not independent of kt, and we accordingly write !
�

t (kt).
16 In this case, �rms with

larger capital stocks will tend to survive low productivity draws that cause smaller �rms to exit.

This self-selection that results from the equilibrium exit behavior implies that the expectation of

!t+1 declines in the size of the capital stock. It can lead to inconsistency in the capital coe�cient

because the conditional expectation of the productivity shock given survival will not equal the

unconditional (on survival) expectation, i.e. E[!t+1j!t; �t+1 = 1] 6= E[!t+1j!t].
17

The need to condition on survival when using an unbalanced panel rests on the primitive that,

within year t, �rms choose to exit or stay after they �rst observe productivity. To see this, suppose

instead that at the beginning of the period, �rms choose to exit or stay before observing produc-

tivity. Hence, �rms choose to exit in year t based on the same information the econometrician

observes in the year t� 1, so

E[!t+1j!t; �t+1 = 1] = E[!t+1j!t]:

We can then proceed with estimation as in (11) above, using just g(�t� �kkt), as there is no need

to condition on an index for survival.

We do control for this potential selection problem. We use the methodology developed by Olley

and Pakes. De�ne g(�) as

g(It) = �0 +

Z
!�

t+1

!t+1
F (d!t+1j!t)R

!�

t+1

F (d!t+1j!t)
= g(!�t+1; !t):

This function gives, up to an additive constant, the conditional expectation from the model of next

period's productivity, !t+1; given last period's !t and �rm survival. Therefore, to obtain consistent

estimates of the capital coe�cient, we must now condition on both !t and !�t+1.

16 This would be true if, for example, signi�cant discounting of the value of the �rm's capital takes place when the
�rm sells it o�. Larger �rms would then stand to lose more money than smaller �rms because they have to sell o�
a larger amount of capital to exit.

17 Much of the focus on selection has highlighted the importance of using unbalanced instead of balanced panel
data. While it is true that going from the balanced to the unbalanced panel will in general alleviate selection bias,
it does not completely address the issue. In this paper, we use an unbalanced sample, but even with the unbalanced
sample, some �rms will exist at the beginning of the year and will not be in the sample at the end of the year. If the
estimated production function is to account for these �rms, it will still be necessary to correct for the selection bias.
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The probability that a �rm survives to the next period is given in the model by:

Prf�t+1 = 1j!tg =Prf!t+1 � !�t+1(kt)j!tg

=Pt(!
�

t+1(kt); !t)

=P (kt; ht(kt; mt))

=P (kt; mt)

(13)

where the third line makes use of the proxy for ! given by (7). Since we can write this distribution

function completely in terms of the observables kt and mt, we can estimate the probability of

survival using a standard probit (we discuss this in the estimation section.) Assuming that we can

invert !�t+1 from line 2 of (13), we can write !�t+1(Pt; !t), i.e. we have !
�

t+1 as a function of Pt and

!t, two objects we can estimate from our observables. Substituting Pt and �t � �kkt into g(�), we

can rewrite (11) as a moment condition in observables and estimates of Pt and �t. This yields

E[yt+1 � �sl
s
t+1 � �ul

u
t+1 � �kkt+1 � g(Pt; �� �kkt)jkt+1; �t+1 = 1] = 0; (14)

which allows us to obtain consistent estimates of �k.
18

4. Country Background and Data

The methodology outlined in the previous section requires very detailed �rm-level data which has

not been censored for entry and exit and which has a reasonable time-series dimension. The Chilean

data set used in this study meets those requirements. These data have been used elsewhere and we

refer the interested reader to those papers for a more detailed description of the data.19 The �rst

part of this section gives some background on the Chilean economy and the data set. The second

part of this section delves deeper into details of the Chilean data set and how those details interact

with the econometrics.

18 Empirically, if we estimate the model conditioning on survival and �nd no statistical di�erence between condi-
tioning and not conditioning on survival, three possible reasons are: 1) �rms do not observe this period's productivity
before they choose to stay or exit, 2) the di�erence between the sell-o� value of the �rm and its present and future
expected pro�ts is not increasing in capital, or 3) the magnitude of the bias induced by selection is very small.

19 See, for example, Lui (1993), Lui and Tybout (1996), Tybout, de Melo, and Corbo (1991), and Levinsohn (1998).
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Country Background

Our data set spans the period from 1979 to 1986. The years prior to the start of our data set, as

well as those covered by the data, were tumultuous ones for Chile. From 1960 to 1972, real per

capita GDP increased from $2897 to $3857.20 During this span, Chile pursued a policy regime of

import-substitution that often protected ine�cient domestic �rms from international competitive

pressures.

In 1973, Pinochet came to power and the economic environment changed dramatically. Fiscal

austerity and a more outward-oriented set of economic policies was introduced. This liberaliza-

tion included privatization of �rms previously held by the government, relaxation of some 3000

government controlled prices, liberalized �nancial markets, a more market-driven labor market,

removal of quantitative trade restrictions and a drastic reduction in tari� levels. These liberalizing

measures were accompanied by contractionary macroeconomic policies which, when coupled with

a decline in copper prices and the oil shocks, led to a severe recession that lasted through 1975.

A recovery from 1976 to 1981 followed, and the broad picture is one in which liberalization was

drastic and mostly complete by 1979, the �rst year of the data set. The Latin American debt crisis

led to another recession in 1982-83 during which industrial output and employment fell. Industrial

output rose again in 1984, stalled in 1985, and then continued to rise throughout the decade. These

macroeconomic cycles are apparent in the �rst column of Table 1 where real GDP is reported for

1979-86.21

The Manufacturing Census and the Construction of Value Added

The data set is comprised of plant-level data of 6665 plants in Chile from 1979 to 1986. The data

are a manufacturing census covering all plants with at least ten employees. The data were originally

provided by Chile's Instituto Nacional de Estadistica (INE). A very detailed description of how the

eight longitudinal samples were combined into a panel is found in Lui (1991). The structure of the

data set is an unbalanced panel. There is information tracking plants over time and the data set

includes plants that enter over the course of the sample period (births) as well as plants that exit

20 These data and related �gures are available on-line in the Penn World Tables, Mark 5.6 at http://www.nber.org.

21 In the mid-1980's, Chile's credit markets were such that smaller �rms were alleged to have found credit di�cult
to obtain. While this is di�cult to document in our data set, it implies that entry and exit patterns may have been
driven by more than the relatively straightforward operate versus shutdown decision in our model. Hence, credit
market issues suggest that �rm size may have mattered in a way that our model does not accommodate.
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(deaths.) Due to the way that the data are reported, we treat plants as �rms, although there are

certainly multi-plant �rms in the sample.22

In an attempt to keep the analysis manageable, we focus on eight of the largest industries

(excluding petroleum and re�ning.) We work with industries at the 3-digit level. The industries

(along with their ISIC codes) are Metals (381), Textiles (321), Food Products (311), Beverages

(313), Other Chemicals (352), Wood Products (331), and Printing and Publishing (342), and

Apparel (322). The data are observed annually and they include a measure of output, a measure of

labor and capital inputs, and a measure of the intermediate inputs electricity and fuels. Real value-

added is the real value of output adjusted for the real cost of all intermediate inputs. Construction

of the real value of capital is documented in Lui (1991), and it includes buildings, machinery, and

vehicles. Labor is the number of man-years hired for production, and �rms distinguish between

their blue- and white- collar workers. Electricity and fuels are measured in the real value of their

volume consumed. All of these inputs enter the value-added production function in log-levels.

Real value of output is computed by de
ating the total annual sales revenues of a �rm with an

industry level price de
ator constructed by the Banco Central de Chile. This de
ator will control for

changes in output prices over time arising from in
ation. It will also control for changes occurring

because of industry level demand shocks. Having controlled for these time-varying e�ects, we then

rely on price-taking behavior at the �rm-level to get comparable quantities across both �rms and

time. The industries we look at have hundreds of �rms, and this observation provides us with some

comfort that price-taking behavior, even as an approximation to reality, is a reasonable assumption.

However, we do remain concerned about the potential for di�erences in output prices within the

3-digit industry level that might arise because of imperfect competition, especially that caused by

product di�erentiation (e.g. di�erences in type and quality of output.) Because we do not observe

�rm-level output prices, we are not in a position to address this concern without placing further

restrictions on the framework.23

The measure of real value added that we use is constructed by subtracting the real value of

raw materials, electricity, and fuels from de
ated total sales revenues. We express this measure as

follows:

V Ait = TSRit=POUTPUT;t �RMit=PRM;t � Eit=PE;it �
X
j

Fijt=PF;ijt;

22 We will not capture the extent to which multi-plant �rms experience scale or scope economies due to their
multi-plant nature. Neither are we able to investigate whether \entry" is a new �rm, a new plant from an existing
�rm, or simply diversi�cation of an existing plant or �rm as discussed in Dunne et al. (1988).

23 Klette and Griliches (1996) provide one set of restrictions that allows for a particular kind of correction for
unobserved �rm-level prices.
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where i indexes �rms, V A is real value added, TSR is total sales revenues, RM is raw materials, E

and F are value of electricity and fuels purchased, and j indexes the 11 di�erent fuels recorded in

the census. The de
ator is written generically as P�;t = p�;t=p80;t, and for the �rm speci�c de
ators,

P�;it = p�;it=p80;it. While the raw materials de
ator is constructed at the country level, both the

electricity and the fuels price de
ators are �rm speci�c. In the Census, �rms report both the volume

of electricity and fuels that they consume, and the price they paid for that volume. These numbers

allow for the construction of average yearly unit input prices. The �rm-level de
ators then can be

used to translate input prices for electricity and fuels into real 1980 Chilean pesos. While we are

less concerned about variation in unit prices for electricity, we remain concerned that the quality

of fuel inputs may vary within a de�ned category.24 This method of de
ation will account for that

variance if the input quality is appropriately re
ected in the input price, and our measure of value

added will then be robust to di�erences in quality of the eleven di�erent types of fuels.

We choose electricity as our primary proxy for productivity. Electricity has a number of ad-

vantages over fuels. First, electricity is an input that all �rms need; we observe positive use of

electricity in every year for almost every �rm in the Census. Second, almost no �rm reports that it

generates electricity, or that it sells electricity, and we interpret this observation as an inability of

�rms to store (or stockpile) electricity. The inability to store electricity means that its use should

be highly correlated with the year-to-year productivity shocks. In contrast, we do not observe

positive use of fuels for a signi�cant number of �rm-year observations; on average, 25-30% of �rms

report zero fuel use and positive output in a year. Since fuels are recorded at purchase, we suspect

that a zero �rm-year observation may actually re
ect positive use of some stockpiled inputs. This

observation suggests that reported purchase of fuels may not generally correspond to actual fuel

consumption. The mismeasurement of fuel usage will lead to inconsistent estimates of the �(�)

function. For this reason, we are inclined to believe that, in our data, electricity will perform better

than fuels as a productivity proxy. Our sensitivity analysis tends to support this view.25

24 For example, we know that di�erent grades of petroleum and gasoline exist, and these two categories make up
a signi�cant amount of the fuel consumption in our data.

25 Note that we can think of no compelling reason to believe that this stockpiling occurs in any systematic way, and
we therefore think of this potential stockpiling phenomenon as measurement error introduced into the dependent
variable; therefore, it does not contaminate our parameter estimates of the value added production function.
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Data Details

The data set is well-suited to the econometric methods proposed in Section 2.2, but there are a few

idiosyncratic features of the data that deserve attention. The �rst concerns the de�nition of the

capital accumulation process and the second concerns missing investment data. These two prevent

us from adopting the methods of Olley and Pakes directly. The third concerns missing capital stock

data. Each is discussed in turn.

The �rst reason we cannot adopt the methods of Olley and Pakes without making substantive

changes has to do with the de�nition of the capital accumulation process. Olley and Pakes construct

their capital series by using a di�erent assumption on the capital accumulation process than is used

in the Chilean data. In Olley and Pakes, the timing of their model is as follows. Firms begin period

t with capital kt. They then observe !t after which they choose to stay or exit (�t). Firms then

choose variable factors and the level of investment. Firms then commence the next period with:

kt+1 = (1� �)kt + it:

In the Chilean data, the capital accumulation process consistent with the reported capital series is

given by

kt = (1� �)kt�1 + it:

The di�erence is subtle, but it matters. In the Olley and Pakes de�nition, investment from period

t does not contribute to production in year t whereas the Chilean data is constructed such that

it does. Under the primitives on the timing in the Olley and Pakes framework, the change in the

capital accumulation process makes the estimator of capital coe�cient inconsistent; this period's

capital, which now includes this period's investment, will be correlated with !t because investment

responds to !t (it is chosen after !t is realized.) However, a small change in the primitive on the

timing of �rm's decisions will permit it+1 to be used as a proxy. The main point is that changing

either the de�nition of capital accumulation or the primitives on the timing of a �rm's actions can

result in estimators contaminated with bias.

The second reason our framework is di�erent from Olley and Pakes is also related to the ob-

servables in the Chilean data. The methods of Olley and Pakes revolve quite centrally around

the investment decision and investment data. As discussed earlier, the estimation routine relies on

investment being strictly increasing in the productivity shocks so the investment function can be

inverted to proxy for productivity. They use data from the U.S. Census of Manufacturers, and they

�nd that 8% of �rm/year observations are reported to be zero. This feature of the data suggests
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that invertibility of i(�) fails at zero investment.26 Therefore, to use investment as a proxy will

require truncation of all observations at zero investment.

In the Chilean data, one-third of the �rm/year observations are reported to have zero investment.

We are hesitant to truncate all of these observations from our estimation procedure. However, since

we �nd that data on electricity is almost always reported at non-zero levels, we design our estimation

strategy to rely on electricity as a proxy.

Another feature of the Chilean data that deserves mention concerns the capital stock variable.

No initial capital stock is reported for some plants, although investment is recorded. When possible,

we used a capital series that was reported for a subsequent base year. For a small number of plants,

capital stock is not reported in any year. We estimated a projected initial capital stock based on

other reported plant observables for these plants. We then used the investment data to �ll out the

capital stock data.

5. Estimation of Productivity and Results

In this section we discuss the details of obtaining parameter estimates for our value-added produc-

tion function. Estimation proceeds in three stages, and is similar to Olley and Pakes (1996) and

Olley and Pakes (1995), except that we use an intermediate input for the productivity proxy.27 In

the �rst stage we estimate the coe�cients on the freely variable factors (unskilled and skilled labor)

using a partially linear model (see, e.g., Robinson (1988).) In the second stage we construct an

index which is used to control for the potential bias from selecting on survival. Using the consistent

estimates of the labor coe�cients and the probability of exit index from stages one and two, we

then exploit the �rst order Markov nature of the productivity process to estimate the coe�cient

on capital. Finally, we use the estimated parameters to compute the productivity residuals. In

the next section, we provide a detailed analysis of these productivity residuals, with a focus on the

relative importance of the true productivity and the rationalization cases.

We begin by estimating equation (9). This equation is partially linear; it is linear in skilled and

unskilled labor, and non-linear in �t(mt; kt). For our base case results, we use data on electricity

usage for mt, although we experiment with other suitable proxies. We proceed by projecting yt on

lut , l
s
t , and a third order polynomial in mt and kt, i.e. we use a polynomial series to approximate

26 The function i(!; k) has a set of ! in its domain with positive measure that maps to 0, and this loss of the
injective property means that i�1(0; k) is not unique.

27 Here we only cover the speci�cs of how our estimation proceeds. We encourage the interested reader to consult
the articles by Olley and Pakes for a fuller discussion of the econometric issues, including proofs of the consistency
of our parameter estimates.
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the function �t(mt; kt).
28 We also allow for di�erent functions �t(�) for each of the periods 1979-81,

1982-83, and 1984-86, corresponding to the expansions and recession that is evident from Table 1.

As we discussed in section 3, this stage yields estimates of �ul and �
u
s which are not contaminated by

labor's responsiveness to the current period's productivity shock because productivity is controlled

for by including the �t(�) function.

The second stage estimates survival probabilities from equation (13). Recall from (13) that the

two arguments in the exit decision function are mt and kt. Therefore, we use a probit which has as

arguments a third order polynomial series in these two variables, and we also permit this function

to di�er over the three time periods. Generally, we �nd that controlling for selection in our model

has little e�ect on the �nal parameter estimates (just as Olley and Pakes �nd with their unbalanced

data.) This result is not surprising since we are not arti�cially truncating on survival to obtain a

balanced sample (i.e. we are working with the full unbalanced data.)

The last stage of the estimation uses �̂ul , �̂
u
s , �̂t(�), and P̂t(�) to construct the moment from

(10) (or (11)) that can be used to consistently estimate the capital coe�cient (it controls for the

potential correlation between kt+1 and E[!t+1j!t; �t+1 = 1].) Given any candidate value for �k,

say ��, we can estimate the function g(Pt; �t � ��kt) using a third order series estimator in the

two arguments P̂t(�) and (�̂t � ��kt). Alternatively, we can compute for any candidate value ��

(�̂t � ��kt), and with P̂t(�) we are then able to compute the residual

[�i;t+1 + �i;t+1](�
�)

for any �rm i (see equation (10).) We then use a non-linear least squares routine to locate the

minimizer �̂k which solves

min�
X
i

Ti1X
t=Ti0

([�i;t+1 + �i;t+1](�))
2
;

where Ti0 and Ti1 index the second and last period a �rm is observed.

The results of the estimated production functions are reported in Table 2. The �rst column

for each industry reports the OLS estimates of the production function while the second column

gives the results using the Olley-Pakes estimator amended as discussed in Section 3. The results

reinforce the message of Olley and Pakes (1995) (which looked at just one industry.)

28 In this and all future polynomial series approximations we experimented with a fourth order expansion and
found that it had a negligible e�ect on our �nal parameter estimates.
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As one might expect, almost all the coe�cients of the Cobb-Douglas production functions are

precisely estimated. (The sole exception is the OP/LP estimate of �k in the Beverages industry.)29

All industries have value-added production functions with "increasing"returns to scale. This was

also the case for the production function estimates by Pavcnik (1997) as well as Lui (1991). It is

important to be careful when interpreting these coe�cients, though, since this notion is di�erent

from increasing returns to scale of the gross output production function. (See Basu and Fernald

(1997) for a careful analysis of the relationship between estimates of returns to scale from gross

output data and value-added data.)

If blue collar labor is positively correlated with productivity, so that more workers are hired in

good years and fewer in bad years, theory suggests that the OLS coe�cient on blue collar labor

is biased upward. The same bias applies to white collar labor should it too be a variable factor

responding to productivity shocks. For the industries in Table 2, the coe�cient on blue collar labor

falls in every industry when we condition on our proxy for !t. While the range of this decrease

varies across industries, a decrease on the order of 15-20 percent seems common. For white collar

labor, the results are less unanimous and this is consistent with the notion that white collar labor

is less uniformly responsive to productivity shocks. In �ve industries, the OP/LP estimates of the

coe�cient on white collar labor are less than the OLS estimates, while in the other three they are

higher. These results, taken together, are supportive of the notion that our proxy for !t is probably

working well.

The coe�cient on capital in our production function increases when we use the OP/LP estima-

tor instead of the OLS estimator in every industry. In Food Products, Printing and Publishing,

Apparel, and Wood Products, this increase is especially substantial. There are three reasons why

the OLS and OP/LP estimates might di�er. First, if capital usage is (positively) correlated with

either this period's productivity (!t) or last period's, the OLS coe�cient on capital will be (up-

wardly) biased. This is the same story as with the coe�cient on blue-collar labor. Second, if exit is

important, the OLS capital coe�cient will be biased downward. Because we are working with an

unbalanced panel, the selection correction is unlikely to have the impact that it might if we were

comparing the OP/LP estimator with OLS on the balanced panel. To best understand the third

reason why we might expect the coe�cient on capital to change, imagine the following thought

experiment. Suppose that there was no selection bias and that capital usage was not correlated

29 The estimates for the Beverages industry, and only this industry, do not include a correction for possible selection
bias. That is, we do not estimate the probit for exit probabilities in this industry. This is because there were so few
�rms exiting this industry that the probit was not well identi�ed.
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with this or last period's productivity. One can show that if this is the case, but that labor is

correlated with productivity, the coe�cient on capital will be downwardly biased so long as capital

positively covaries with labor. This is a statistical property of the estimates and exists even when

the economic properties of capital and productivity do not induce a bias. In practice, all three of

these biases are, to some extent, working in di�erent directions and at varying magnitudes and the

di�erence between the OLS and OP/LP estimates confounds the three in
uences.

Olley and Pakes (1996) also found that correcting for possible simultaneity led to an increase in

the estimated marginal product of capital. Our results are the same and, as such, are perhaps not

surprising. On the other hand, the fact that the pattern of the bias in the capital coe�cient was

the same in all the industries was surprising. Our results suggest that the changes in the marginal

productivities found by Olley and Pakes in telecommunications were not a 
uke. In other words,

Marschak and Andrews had it right in 1944; it appears that correcting for simultaneity really does

change the production function estimates.

We conclude this section with a speci�cation test that essentially asks whether the relative

complexity of the OP/LP estimates is really necessary. While the OP/LP estimation algorithm

is not especially di�cult, it is more involved than either OLS or the most commonly adopted

alternative{ �xed e�ects estimation. The bene�t of the OP/LP estimates are that they do not

impose too much structure on the residuals (a component of which is interpreted to represent

productivity.) The OP/LP estimates assume that the residuals follow a �rst-order Markov process.

This assumption nests both OLS and the Fixed E�ects speci�cation. When we conducted Wald

tests to see whether the data reject the simpler speci�cations, we found the following. When OLS

was the null hypothesis, we rejected the null in favor of the �rst-orderMarkov process for seven of the

eight industries. Tests were performed at the 1% level of signi�cance. Only in \Other Chemicals"

could we not reject OLS. When �xed e�ects was the null hypothesis, we rejected this null in all

eight industries. We conclude that the data are not compatible with the simpler speci�cations. In

the next section, we investigate whether the di�erences between the simpler OLS estimation and

the OP/LP estimation matter to the questions we address.

6. Productivity Dynamics

The estimates in Table 2 imply �rm-speci�c measures of productivity. We de�ne the productivity

of �rm i in year t to be:

!̂it = exp(yit � �̂kkit � �̂sl
s
it � �̂ul

u
it); (15)
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where the estimated �'s are the OP/LP estimates in Table 2. We begin our discussion of produc-

tivity dynamics by simply examining the annual industry-level productivity indexes. We de�ne

industry-level productivity, denoted 
, to be a weighted average of �rm-level productivities, where

weights are shares of industry output. Hence,


t =

NX
i=1

sit!̂it

where sit is plant i's share of industry output in year t and !̂it is as de�ned in (15).

Normalizing the productivity in each industry in 1979 to 1.00, the industry-level productivity

indexes are reported in Table 3. The bottom two rows for each industry summarize the change in

productivity for the periods 1979-83 and 1983-86. The latter period was marked by consistent real

GDP growth while the former includes a recessionary cycle. In Metals, Textiles, Food Products, and

Apparel, there was an increase in industry productivity, while in the others productivity declined.

In Beverages, the decline was modest, while in Chemicals, Printing, and Wood Processing it was

substantial.30 Overall, this index of average productivity suggests that there is much heterogeneity

in productivity growth across the industries.

We also investigate changes in industry-level productivity by examining how the entire distri-

bution of �rm-level productivity evolves. Our approach here is essentially non-parametric and asks

whether this distribution is stable over time. The test used is the distribution-free Kolmogorov-

Smirno� test. Loosely speaking, the test examines two empirical distribution functions, looks for

the maximal di�erence between them, and applies a test statistic to this di�erence. This test has

the advantage that it imposes very little structure on the data. On the other hand, the test does

not discern how the distribution of productivity changes. One can only test the null hypothesis

that both observed empirical distributions come from the same underlying population distribution.

There are several ways one could proceed with this approach. One could compare the distri-

bution of productivities for an industry on a year-by-year basis and ask whether two consecutive

years' productivities were drawn from the same distribution. We opt for a more parsimonious

approach and simply test whether the distributions of productivities for �rms are the same for the

1979-82 and 1983-86 sub-periods. That is, we take the distribution of all estimated productivities,

combining years within each sub-period, and ask whether the distributions for the two sub-periods

come from the same underlying distribution.

30 The large decline in the productivity index for Wood Products in 1986 leads us to view that number with some
caution. In this industry, one very large and very productive �rm exits the sample in the last year. It is unclear
whether this is a reporting error or true exit. We treat it as the latter, but are cautious about reading much into
the large decline in industry productivity in this industry in 1986.
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The results for each of the eight industries are given in the column of Table 4 titled \Stationary

Productivity." At a one percent level of signi�cance, we fail to reject the null hypothesis that the two

sample distributions come from the same underlying population distribution for three industries:

Metals, Beverages, and Wood Products.31 In the �ve other cases we reject this null hypothesis.

These results are broadly supportive of the results reported in Table 3. The industries for which we

fail to reject the null of the same underlying distribution across sub-periods are the same industries

that, in Table 3, had little di�erence between the average index productivity number for 1979-82

and the number for 1983-86. The exception is Textiles, where Table 3 indicates a relatively small

change but the Kolmogorov-Smirno� indicates di�erent underlying distributions.

The numbers in Table 3 are unitless (they are ratios of averages.) In this regard, they tell

us little about the actual economic value of the productivity changes. In order to measure this

magnitude, we ask how a �rm's value of output would have changed from year t to year t+1 if we

held inputs constant but let productivity evolve. Formally, we de�ne the value of the productivity

change for �rm i in year t + 1, or vi;t+1, as

vi;t+1 =!̂i;t+1exp(�̂0 + �̂sl
s
it + �̂ul

u
it + �̂kkit)� !̂i;texp(�̂0 + �̂sl

s
it + �̂ul

u
it + �̂kkit)

=(!̂i;t+1 � !̂i;t)exp(�̂0 + �̂sl
s
it + �̂ul

u
it + �̂kkit):

(16)

For each industry, Table 5 reports the sum across both �rms and time (1979-86) of these peso-

denominated changes in output. Using this measure, we �nd that six of the eight industries ex-

perienced productivity gains between 1979 and 1986. For some industries, these gains were rather

large. Textiles and Food Products experienced gains in productivity of approximately 30% of their

average value-added, and Apparel registered a gain of over 50% of value-added. While these num-

bers are large, they may be quite consistent with the productivity gains accruing to industries that

bene�tted from the extensive economic reforms completed just prior to the beginning of our sample

period.

As mentioned earlier, our estimation routine nests OLS. Therefore, it is natural to compare the

OLS estimates of productivity gains using the above approach with those obtained from the OP/LP

approach. Column 4 of Table 5 reports the OLS numbers. Column 5 reports the di�erence between

the OLS number and the OP/LP number, divided by the average level of industry value added

over the sample period. OLS appears to both under- and over-forecast the gains from productivity.

Frequently this mistake is large. In Food Products, Beverages, Printing and Publishing, and Wood

31 These industries could be viewed as consistent with the equilibrium notion employed in Hopenhayn and Rogerson
(1993).
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Products, OLS misforecasts by approximately 10% of the average value added for the industry. In

Metals OLS overestimates the gains by almost 7%. In Textiles, however, OLS does appear to get it

right. These results suggest that OLS should be used with care if inferences are to be drawn about

the currency-denominated magnitudes of the productivity changes.

Decomposing Productivity

The numbers we have reported up to now have been aggregated to a level which makes it di�cult to

see how productivity is changing. In our results, these aggregate numbers hide tremendous variation

of �rm-level changes in productivity over time. Our main focus is on trying to better understand

what that variation means for real productivity and rationalization. Therefore, in order to better

understand what underlies the industry-level changes in productivity, we focus in this subsection

on decomposing those changes.

We decompose the changes in industry-level productivity into four parts. For the sake of illus-

tration, suppose that industry-level productivity increases. This can occur because output shares

are reallocated from less e�cient plants to more e�cient plants. We term this e�ect the reallo-

cation e�ect.32 Productivity can also increase because each plant in the industry becomes more

productive even though output shares remain constant. We term this e�ect the productivity e�ect.

Industry-level productivity can increase if entrants are more productive than the average incum-

bent. This e�ect is the entry e�ect. Finally, industry-level productivity can increase if less e�cient

�rms exit, and this is the exit e�ect. Formally, the decomposition is given by:

�
 =
X
i2C

si;t�1�!̂it +
X
i2C

�sit!̂it +
X
i2B

sit!̂it �
X
i2D

si;t�1!̂i;t�1 (17)

where C is the set of continuing �rms, B the set of entrants, and D the set of exiters. The di�erence

operator, �, denotes the di�erence between year t and t � 1. The terms on the right-hand-side of

(17) are, respectively, the productivity, reallocation, entry, and exit e�ects.33 The �rst term in the

decomposition corresponds to our true productivity case, while the last three terms correspond to

our rationalization case.

Table 6 provides the productivity decompositions for each industry. Before examining the eight

industries and patterns across them, it is helpful to �rst focus on just one industry and consider in

32 This is not the same as the reallocation e�ect discussed in Olley and Pakes (1995). In that paper, \reallocation"
refers to the contemporaneous covariance between market share and productivity.

33 This decomposition is not original and appears, in various forms, throughout the literature. See Bailey et al.
(1992) and Tybout (1996).

31



some detail what the numbers in this table mean. We focus, for the sake of illustration, on the �rst

industry in the table, Metals. We have divided the sample period into two sub-samples. As noted

previously, the period from 1979-83 was a time of macroeconomic contraction while 1983-86 were

more expansionary years in Chile. The top of the �rst column for Metals lists the total change

in the industry productivity index { 17.2 { which is computed as 
83 � 
79. This index number

represents the productivity change in the Metals industry from 1979 to 1983. To put its magnitude

in some perspective, the bottom two rows of the �rst column list two measures of the average level

of productivity in this industry. The �rst measure is the average of the �rst and �nal year of 
(�)

((
83+
79)=2 in this case). The second number averages across all years (1979-83 in this case).34

Depending on the measure, the Metals productivity index averages either 66.2 or 79.2. Against

this level, the change in the index over this period was 17.2. Hence, according to this measure,

productivity increased on the order of 20 to 25 percent in Metals between 1979 and 1983.

The four rows below the total change give the components of the decomposition. The sum of

these four rows, by construction, is the total change. The �rst of these rows gives the productivity

term. This can be either positive (for a given distribution of market shares, �rms become more

productive) or negative (for a given distribution of market shares, �rms become less productive.)

The second row gives the reallocation term. This term can also be either positive (increasing market

shares for more productive �rms) or negative (decreasing market shares for more productive �rms.)

The third term gives the impact of entry. Due to the de�nition of productivity in (15), this term is

always positive, although its magnitude can vary widely. The last term gives the impact of exit and,

again due to the de�nition of !̂, this term is always negative. Exit also impacts the reallocation

term, albeit indirectly, since when a �rm exits, the market shares of surviving �rms increase, all else

equal. (Similarly, entry has a negative in
uence on the reallocation term.) It remains an empirical

question whether the net impact of entry and exit is to increase or decrease industry productivity.

In the example at hand, the net impact is an increase (2.8 - 1.7 = 0.8) in productivity due to entry

and exit. We now turn to examining the rest of Table 6.

Of the four industries in which aggregate productivity increased, Metals, Textiles, Apparel, and

Food Products, we �nd that very little of the increase in productivity was accounted for by �rms

actually becoming more productive (the real productivity case.) The sole exception is the Apparel

industry from 1983-86. Indeed, in four of the eight sub-periods for these increasing productivity

34 The �rst measure also accounts for entry and exit of �rms, whereas the second measure does not. See Table 6
notes for details.
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industries, the share-weighted change in �rm productivity was negative. Rather than �rms becom-

ing more productive, reallocation of market shares to �rms that were already more productive and

net entry typically explain the increase in aggregate productivity. In the introduction, we posed

the question: \As industries become more productive, do �rms?" In our data, the answer is almost

always \no," as we �nd scant evidence of real productivity gains even where the industry-level

measure of productivity increases.

A second �nding from these productivity decompositions is an apparent asymmetry between the

reallocation/rationalization story. When industry productivity increases, output gets reallocated

to more productive �rms. Were reallocation and rationalization to play an important role in the

industries for which productivity decreases, market shares would have to shift away from the more

productive �rms and toward the less productive �rms. While there is nothing to prevent this from

happening, economic intuition suggests it ought not happen much. This is indeed the case. In the

four industries for which aggregate productivity falls, incumbent �rms su�er decreased productivity

(the real productivity case applies when productivity declines.) We also �nd, for the industries in

which aggregate productivity falls, that the gross impact of entry and exit (de�ned as the sum

of entry and the absolute value of exit) is typically larger than the impact of reallocation. The

fact that reallocation simply does not appear to be very important in industries with declining

productivity strikes us as reassuring evidence that we are perhaps actually measuring what we

think we are measuring.

Before leaving behind the issue of what underlies the industry-level changes in productivity, we

report one more set of results that does not depend on the speci�c decomposition used in (17).

If �rms are actually becoming more productive in some systematic way, one might expect the

measured �rm-level productivity to increase from one year to the next. In the last column of Table

4, we report the percentage of �rm-year observations that show an increase in productivity over

the previous year. The boot-strapped standard errors of this statistic are given in parentheses.

In Table 3, four industries showed increased industry-level productivity: Metals, Textiles, Food

Products, and Apparel. In Table 4, all except Metals have more than 50 percent of adjacent

�rm-year observations showing increased productivity, and this suggests that the decomposition in

(17) is reasonable. What is surprising is how often adjacent �rm-year observations decline in the

industries showing the largest industry-level productivity gains. We view these results as again

stressing the empirical importance of �rm heterogeneity and the role of industry rationalization.35

35 The numbers in the last column of Table 4 somewhat understate the role of industry rationalization since entry
and exit do not �gure into these numbers.
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Table 2 listed both OLS and OP/LP estimates of the production functions. We have already seen

that di�erent parameter estimates translate into di�erent estimates for the value of productivity

gains. It is reasonable to wonder whether the di�erent parameter estimates translate into di�erent

implications for the components of change in industry productivity. Table 7 addresses this concern.

That table is essentially the same as Table 6 except the OLS estimates are used to compute the

underlying estimated !0s whose changes are then decomposed.

A comparison of Tables 6 and 7 shows that the estimated levels of productivity (the bottom

two rows) for a given industry vary depending on the estimation method (OLS versus OP/LP),

and there are no general patterns. In Beverages and Other Chemicals, the level of the productivity

index is higher with the OP/LP estimates. That is, given the exact same input and output data,

the OP/LP estimates imply a higher level of productivity than do the OLS estimates. In the other

six industries, the OLS estimates imply a higher level of productivity. In some cases, the di�erences

are quite dramatic. In Printing and Publishing as well as in the Wood Products industries, the

OLS estimates appear to substantially overstate the level of productivity. In Beverages, on the

other hand, the OLS estimates yield a productivity index that is only about one third that implied

by the OP/LP estimates. The di�erences in the decompositions across the two types of estimates,

though, are less dramatic. While the share of the change due to reallocation versus productivity

changes across the two types of estimates, the general pattern is the same. When productivity rises,

whatever the method of estimation, reallocation is typically quite important while real productivity

changes apply when the productivity falls. This results obtains because: 1) many of the variables

in the decomposition (i.e. shares and changes therein as well as the sets of entrants and exiters) are

data and are una�ected by the method of estimation; and 2) the estimated !'s are highly correlated

across the methods of estimation. In summary, the decompositions in Table 7 present a picture of

what underlies industry changes in productivity that is similar to that presented in Table 6.

In addition to using electricity as the productivity proxy, we also experimented with using

fuels. As mentioned earlier, we felt that fuels might present certain problems given that they are

easily stockpiled, and that there are about 25-30 percent of �rm-year observations that report

positive output but zero fuel consumption (i.e. zero fuel purchase), compared to only 5 percent for

electricity. Nonetheless, we estimated the production functions for all eight industries using fuels

as the productivity proxy. We found that in three cases, Textiles, Wood Products, and Paper and

Printing, the parameter estimate for capital was signi�cantly di�erent from that obtained using

electricity. Only in Food Products were the labor coe�cients signi�cantly di�erent from those
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obtained using electricity. In all other cases, the labor coe�cients for both skilled and unskilled

labor were comparable across proxies. Again, we are inclined to attribute these di�erences to the

mismeasurement of the utilization of fuels which occurs because they are reported at purchase and

not at use. In spite of these di�erences, we feel that it is not unfair to conclude that the choice of

proxy is not driving our key results.

7. Conclusions and Caveats

The paper has investigated what underlies changes in industry productivity in Chile during a

period following a broad trade liberalization. In the introduction, we posited two ways in which

industry productivity might change. The �rst, coined the real productivity case, involved changes in

�rm-level productivities. In the instance of increasing industry productivity, �rms actually become

more productive. The second, coined the rationalization case, focused on the role of shifting market

shares. In the case of increasing industry productivity, market shares get reallocated toward more

productive plants and away from less productive ones. Entry and exit also play a role. Our

results indicate that the rationalization case is empirically the most important case when industry

productivity increases. When industry productivity decreases, the true productivity case is more

important.

The rationalization case is one in which �rm heterogeneity takes front stage. The real produc-

tivity case can accommodate �rm heterogeneity, but the story is perfectly plausible in an industry

of identical �rms. When reviewing models of how openness impacts �rms, industries, and �nally,

countries, the theoretical literature is full of models of representative �rms, yet the empirical evi-

dence stresses the importance of �rm heterogeneity. One lesson from this paper is that there is a

need for more modeling of how openness impacts �rms and hence industries and countries, and this

modeling needs to account for the distribution of �rms in an industry. The industrial organization

literature provides some useful starting points for such a modeling exercise.

In the course of measuring productivity dynamics, it was important to estimate productivity

in a 
exible manner that did not impose too much structure on the pattern of productivity. Our

methods nested simpler structures such as the i.i.d. assumption of Ordinary Least Squares or the

constant productivity over time by a �rm as in the �xed e�ects estimator. We soundly reject the

appropriateness of these simpler estimators, and our results suggest that the di�erences matter in

ways that are economically important. However, we do �nd that OLS does consistently predict

the direction of productivity movements. Empirically, if one is only interested in the direction, our

results suggest that OLS with an unbalanced panel may su�ce, thereby avoiding the additional

complications associated with estimating parameters of the more 
exible framework.
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The estimator we use builds directly on the work of Olley and Pakes. We extend the powerful

idea of using a proxy for productivity, and show that a wide range of proxies are available when

using a value-added production function. We also validate the �ndings of Olley and Pakes for

a wide range of industries. Finally, we �nd econometric evidence of the relative 
exibility of

inputs, as white collar labor appears less 
exible than blue collar labor. The relative 
exibility of

inputs is not discussed much in this paper, but the methods developed are well-suited to inferring

relative 
exibility of inputs{ an idea that is important to distinguishing between several models of

international trade as well as an important determinant in several political economy models.

That is what we did. There are several reasons to view these results with some caution. We

suggest four such caveats, and view these caveats as potential extensions to this work.

First, what about the demand side? This paper, like almost all its predecessors in the production

function estimation literature, conducts its analysis in the total absence of a demand side of the

industry. Adding a demand side to the model and integrating this with the production side would

be a very useful extension. Related to this, there is no discussion in the paper of the role of capacity

utilization. Capital which is in place but is not used due to insu�cient demand shows up as capital

in the production function. Output, though, is presumably lower with unused capital. Is this really

lower productivity?

Second, the results of our estimated production functions may be consistent with increasing

returns to scale, yet our proxy is dependent on price-taking behavior by the �rm. As noted above,

we estimate a value-added production function. Simply adding coe�cients as one would do with

an output production function may not be appropriate. Yet under some circumstances it is appro-

priate while under others, the estimated returns to scale with the value-added production function

underestimates returns to scale. There is a tension between the estimates and the assumption of

price taking �rms. There are ways to explain this. Returns to scale might be external to the �rm.

There may be measurement error in inputs or outputs that give rise to this. An explanation we �nd

more convincing is that with sunk costs and productivity shocks that follow a �rst-order Markov

process, most �rms will eventually exit. Knowing this, �rms' otherwise unfettered tendency to work

their way down the average cost curve (and the resulting industry consolidation) is tempered. This

suggests that �rms might still be price takers even if there are increasing returns to scale. These

industries have hundreds, and in some cases thousands, of �rms so, on the surface, the price-taking

assumption does not seem crazy. Still, this caveat deserves mention.

Third, there are yet more sensitivity analyses that we have not conducted. For example, we have

adopted a very simple Cobb-Douglas utility function. Would a slightly more 
exible functional form
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yield a similar story concerning the relative importance of the real productivity and rationalization

cases?

Fourth, the model implicitly assumes maximizing �rms, but it does not make use of the addi-

tional structure this imposes.36 For example, estimation is focused exclusively on the production

function. One could, though, simultaneously estimate the derived demand for inputs that is con-

sistent with the estimated production function. This would impose additional structure and could

contribute to more e�cient estimates of the parameters of the production function. While this

would substantially complicate estimation, it would be in the spirit of recent work that uses equi-

librium relationships to better identify parameters of interest.

36 We are grateful to Roger Gordon for pointing this out.

37



References

Arrow, K. (1962). The economic implications of learning by doing. Review of Economic Studies,
29, 155{173.

Aw, B., Chen, X., and Roberts, M. (1998). Firm-level evidence on productivity di�erentials and
turnover in Taiwanese manufacturing. Mimeo.

Bailey, M. N., Hulten, C., and Campbell, D. (1992). Productivity dynamics in manufacturing
plants. Brookings Papers on Economic Activity (Microeconomics), 187{249.

Basu, S., and Fernald, J. (1997). Returns to scale in U.S. production: estimates and implications.
Journal of Political Economy, 105 (2), 249{83.

Davis, S., and Haltiwanger, J. (1990). Gross job creation and destruction: Microeconomic evidence
and macroeconomic implications. NBER Macroeconomics Annual, V, 123{168.

Dunne, T., Roberts, M., and Samuelson, L. (1988). Patterns of �rm entry and exit in u.s. manu-
facturing industries. Rand Journal of Economics, 19 (4), 495{515.

Ericson, R., and Pakes, A. (1995). Markov-perfect industry dynamics: A framework for empirical
work. Review of Economic Studies, 62 (1), 53{82.

Griliches, Z. (1998). R&D and Productivity. Chicago.

Griliches, Z., and Regev, H. (1995). Firm productivity in Israeli industry: 1979-1988. Journal of
Econometrics, 65 (1), 175{203.

Grossman, G., and Helpman, E. (1991). Innovation and growth in the global economy. MIT Press.

Harrison, A. (1994). Producitivity, imperfect competition and trade reform: Theory and evidence.
Journal of International Economics, 36, 53{73.

Heckman, J. (1981). The incidental parameters problem and the problem of initial conditions in
estimating a discrete time-discrete data stochastic process. In Manski, and McFadden (Eds.),
Structural Analysis of Discrete Data with Econometric Applications. MIT Press.

Hopenhayn, H. (1992). Entry, exit, and �rm dynamics in long-run equilibrium. Econometrica, 60,
1127{50.

Hopenhayn, H., and Rogerson, R. (1993). Job turnover and policy evaluation: A general equilib-
rium analysis. Journal of Political Economy, 10 (5), 915{938.

Jovanovic, B. (1982). Selection and the evolution of industry. Econometrica, 50 (3), 649{670.

Klette, T. J., and Griliches, Z. (1996). The inconsistency of common scale esimators when output
prices are unobserved and endogenous. Journal of Applied Econometrics, 11, 343{361.

Levinsohn, J. (1998). Employment responses to international liberalization in Chile. Forthcoming
in the Journal of International Economics.

Lui, L. (1991). Entry-Exit and Productivity Changes: An Empirical Analysis of E�ciency Fron-

tiers. Ph.D. thesis, University of Michigan.

Lui, L. (1993). Entry, exit, and learning in the chilean manufacturing sector. Journal of Develop-
ment Economics, 42, 217{242.

Lui, L., and Tybout, J. (1996). Productivity growth in Colombia and Chile: Panel-based evidence
on the role of entry, exit and learning. In Roberts, M., and Tybout, J. (Eds.), Producer
Heterogeneity and Performance in the Semi-Industrialized Countries, chap. 4. World Bank.

Marschak, J., and Andrews, W. (1944). Random simultaneous equations and the theory of pro-
duction. Econometrica, 12 (3-4), 143{205.

Olley, S., and Pakes, A. (1995). A limit theorem for a smooth class of semiparametric estimators.
Journal of Econometrics, 65 (1), 292{332.

Olley, S., and Pakes, A. (1996). The dynamics of productivity in the telecommunications equipment
industry. Econometrica, 64 (6), 1263{1298.

38



Pakes, A. (1996). Dynamic structural models, problems and prospects: mixed continuous discrete
controls and market interaction. In Sims, C. (Ed.), Advances in Econometrics, Sixth World

Congress, Volume II, pp. 171{259 New York. Cambridge.
Pavcnik, N. (1997). Trade liberalization, exit, and productivity improvements: Evidence from

Chilean plants. Working Paper, Department of Economics, Princeton University.
Roberts, M., and Tybout, J. (1996). Industrial Evolution in Developing Countries. Oxford

University Press for The World Bank, New York.
Roberts, M., and Tybout, J. (1997). The decision to export in colombia: An empirical model of

entry with sunk costs. American Economic Review, 87 (4), 545{64.
Robinson, P. (1988). Root-n consistent semiparametric regression. Econometrica, 55 (4), 931{954.
Romer, P. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94,

1002{1037.
Tybout, J. (1996). Heterogeneity and productivity growth: Assessing the evidence. In Roberts, M.,

and Tybout, J. (Eds.), Industrial Evolution in Developing Countries, chap. 3. World Bank.
Tybout, J., de Melo, J., and Corbo, V. (1991). The e�ects of trade reforms on scale and technical

e�ciency: New evidence from Chile. Journal of International Economics, 31, 231{250.

39



Appendix I.

In this appendix we consider the use of intermediate inputs as proxies for productivity shocks
when �rms operate in a competitive environment. We show the general conditions on the production
technology which yield an intermediate input demand function m�(!; p�l ; p

�

m; k) that is strictly
increasing in the productivity shock (!) (the price of output is normalized to 1.) This result
permits the use of h(m; k) as an index for the productivity shock.

De�nition. An industry is competitive if �rms take input prices and the output price as given.

Intermediate inputs are available as proxies in some imperfectly competitive environments,
although the proof depends on the speci�cs of the competition. Proofs in an imperfectly competitive
environment will likely rely on arguments from the literature on monotone methods.

Assumption 1. The �rm production technology Y = f(k; l;m; !) : R4 ! R is twice continuously
di�erentiable in labor (l) and the intermediate input (m), and fl! , fm! , and fml exist for all values
(k; l;m; !) 2 R4. The industry is competitive, and either a) this period's investment does not
respond to this period's productivity, or b) it does not enter this period's capital. Productivity is
observed before the choice of labor and the intermediate input are made.

The di�erentiability of f(�) can be relaxed with the appropriate appeal to monotone methods.
We treat capital as �xed, and assume both labor and the intermediate input respond to the pro-
ductivity shock. With some additional complexity, it is possible to show the following result when
capital also responds to !, and when more than one type of labor exists.

Result. Under Assumption 1, if fmlfl! > fllfm! everywhere, then m�(!; p�l ; p
�

m; k), the inter-
mediate input demand function, is strictly increasing in !.

Proof. Given the assumption, a pro�t-maximizing �rm has an intermediate input demand
function that satis�es

sign(
@m�

@!
) = sign(fmlfl! � fllfm!) (A1)

(see Varian (1992), pp. 494-495.) Under mild regularity conditions on f(�) that insure the Funda-
mental Theorem of Calculus holds for m�(�),

m�(!2; p
�

l ; p
�

m; k)�m�(!1; p
�

l ; p
�

m; k) =

Z !2

!1

@m�

@!
(!; p�l ; p

�

m; k)P (d!jk):

Since fmlfl! > fllfm! everywhere, it follows from (A1) thatZ !2

!1

@m�

@!
(!; p�l ; p

�

m; k)P (d!jk) >

Z !2

!1

0 P (d!jk) = 0;

so
m�(!2; p

�

l ; p
�

m; k) > m�(!1; p
�

l ; p
�

m; k)if!2 > !1:

Economic theory can be used to help sign the above derivatives. If the marginal product of
labor declines as labor increases, sign(fll) will be negative. Additionally, if increases in productivity
always weakly increase the marginal product of inputs, then fl! and fm! are non-negative (one
must be positive.) If these economic restrictions on f(�) hold true, then the essence of the result
is driven by the cross-partial of output with respect to the intermediate input and labor. If the
marginal product of the intermediate input increases as labor use increases (i.e. fml > 0), then the

40



monotonicity result holds. However, if the marginal product of the intermediate input falls rapidly
with increases in labor, then fmlfl! � fllfm! may be negative, causing the monotonicity result to
fail.

Using the above result, it is straightforward to show that the Cobb-Douglas production tech-
nology

Y = exp(�0 + ! + �)l�lk�km�
m

has an intermediate input demand function that is strictly increasing in ! (inputs are written in
actual levels.) The derivatives of interest and their signs are

fml =
�l�m

lm
Y > 0;

fl! =
�l

l
Y > 0;

fm! =
�m

m
Y > 0;

fll =
(�l � 1)(�l)

l2
Y < 0;

and the expression fmlfl! � fllfm! is positive if �l � 1. An small increase in ! brings about an
increase in the marginal product of all inputs, and with �xed input and output prices, the �rm �nds
it optimal to produce more output by using more of all of its inputs, including the intermediate
input. This result holds true for all small increases in productivity, and it therefore holds true for
all productivity increases, so use of the intermediate input is strictly increasing in !.
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TABLE 1

Some Descriptive Statistics on Chilean Manufacturing

GDP Real Metals Textiles Food Products Beverages

Exchange Value Value Value Value

Rate Plants Added Plants Added Plants Added Plants Added

1979 997.6 171.3 459 10.0 503 12.4 1,537 39.0 211 14.1

1980 1,075.3 199.1 447 11.0 445 12.9 1,439 43.4 188 14.7

1981 1,134.7 234.9 413 11.5 403 11.3 1,351 42.7 158 10.4

1982 974.9 212.3 365 8.1 350 8.7 1,319 47.0 151 11.7

1983 968.0 172.9 322 8.3 327 9.7 1,297 42.9 148 13.1

1984 1,029.4 169.9 358 11.4 336 10.4 1,340 46.8 138 13.2

1985 1,054.6 136.9 351 9.6 337 10.8 1,338 49.1 127 11.5

1986 1,114.3 115.7 347 9.6 331 12.9 1,288 61.4 111 12.8

Other Printing & Wood Products Apparel

Chemicals Publishing

Value Value Value Value

Plants Added Plants Added Plants Added Plants Added

1979 171 15.1 242 11.4 524 10.4 442 6.6

1980 166 16.9 227 10.5 449 8.7 398 6.7

1981 159 17.5 206 12.8 406 6.8 346 6.6

1982 148 14.8 196 8.9 358 6.5 305 5.3

1983 145 12.6 177 5.8 335 8.1 265 4.1

1984 151 12.9 167 5.8 339 10.3 294 6.4

1985 149 11.2 164 4.7 342 10.1 275 8.5

1986 153 9.1 163 4.5 313 5.3 280 11.3

Notes: GDP �gures from the International Financial Statistics Yearbook. GDP and value added
in millions of 1980 pesos.



TABLE 2

Production Function Estimates

Metals Textiles Food Products Beverages

OLS OP/LP OLS OP/LP OLS OP/LP OLS OP/LP

Blue Collar 0.712 0.573 0.564 0.506 0.527 0.440 0.561 0.336

(0.032) (0.034) (0.037) (0.042) (0.019) (0.018) (0.083) (0.086)

White Collar 0.462 0.405 0.464 0.477 0.522 0.305 0.733 0.601

(0.034) (0.035) (0.039) (0.039) (0.020) (0.009) (0.074) (0.076)

Capital 0.210 0.308 0.205 0.276 0.334 0.499 0.222 0.264

(0.017) (0.019) (0.019) (0.026) (0.075) (0.009) (0.030) (0.166)

Sum of Coe�. 1.384 1.286 1.233 1.260 1.383 1.244 1.516 1.200

No. Obs. 2081 1659 2094 1683 6511 5403 566 462

Other Printing & Wood Apparel

Chemicals Publishing Products

OLS OP/LP OLS OP/LP OLS OP/LP OLS OP/LP

Blue Collar 0.375 0.283 0.582 0.471 0.625 0.542 0.709 0.565

(0.051) (0.054) (0.046) (0.046) (0.042) (0.048) (0.037) (0.039)

White Collar 0.724 0.744 0.352 0.431 0.586 0.487 0.456 0.416

(0.048) (0.049) (0.040) (0.039) (0.050) (0.054) (0.039) (0.039)

Capital 0.275 0.286 0.288 0.543 0.177 0.373 0.142 0.237

(0.035) (0.028) (0.029) (0.041) (0.027) (0.013) (0.021) (0.098)

Sum of Coef 1.374 1.312 1.223 1.444 1.388 1.403 1.306 1.218

No. Obs. 928 766 987 824 1610 1299 1760 1412

Notes: The estimate for Beverages does not correct for �rm survival.



TABLE 3

Industry Productivity

Metals Textiles Food Products Beverages

1979 1.00 1.00 1.00 1.00

1980 1.21 1.23 0.87 0.88

1981 1.27 1.61 0.94 0.71

1982 1.21 1.34 1.09 1.06

1983 1.35 1.32 0.89 0.94

1984 1.47 1.16 1.62 0.87

1985 1.17 1.19 1.60 0.79

1986 1.06 1.33 1.81 0.89

Change 79-83 0.35 0.32 -0.11 -0.06

Change 83-86 -0.29 0.01 0.92 -0.06

Other Printing & Wood Apparel

Chemicals Publishing Products (Preliminary)

1979 1.00 1.00 1.00 1.00

1980 0.92 0.90 0.86 1.17

1981 0.88 0.94 0.69 1.31

1982 0.88 0.64 1.13 1.52

1983 0.71 0.52 0.98 1.31

1984 0.69 0.53 0.95 1.33

1985 0.59 0.44 1.00 1.52

1986 0.50 0.39 0.60 2.23

Change 79-83 -0.29 -0.48 -0.02 0.31

Change 83-86 -0.21 -0.13 -0.38 0.92

Notes: Industry Productivity is de�ned as a weighted sum of �rm productivities (!'s), with
shares of total value added as weights. The productivities are normalized by industry so that
industry productivity equals to 1.00 in 1979.



TABLE 4

Some Non-Parametric Evidence

Industry Stationary Increasing

Distribution Productivity

Metals YES 47.9% (1.0%)

Textiles NO 50.4% (1.3%)

Food Products NO 54.2% (0.6%)

Beverages YES 49.5% (2.1%)

Other Chemicals NO 41.5% (2.0%)

Paper and Printing NO 38.8% (1.8%)

Wood Products YES 47.4% (1.4%)

Apparel NO 58.2% (1.3%)

Notes: The \Stationary Distribution" column compares the distribution of productivity between
1979-1982 and 1983-86 using the distribution-free Kolmogorov-Smirno� test with the null that both
empirical samples are drawn from the same underlying distribution. The test is performed at the
99% con�dence level and a \YES" indicates that the null is accepted.

The \Increasing Productivity" statistic is the empirical percentage of the number of adjacent
�rm-year observations that show an increase in productivity. The bootstrapped standard errors
are in parentheses.



TABLE 5

Productivity Changes in Millions of 1980 Pesos

OP/LP OLS Di�erence in

Average Productivity Change Productivity Change Productivity Change

Value Added Mil. Pesos Mil. Pesos Percent of VA

Metals 9.62 1.17 1.83 6.9

Textiles 10.23 2.97 2.97 0.0

Food Products 41.90 16.23 20.78 10.8

Beverages 12.20 0.38 1.70 10.8

Other Chemicals 14.09 -4.74 -4.45 2.0

Printing & Pub. 8.07 -5.06 -4.30 9.3

Wood Products 8.03 1.11 1.88 9.7

Apparel 5.94 3.53 3.70 2.9



TABLE 6

Productivity Decompositions

Metals Textiles Food Products Beverages

'79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86

Total Change 17.2 -20.3 22.1 1.2 -2.9 26.1 -17.1 -19.8

Productivity 4.7 -23.6 5.3 -2.3 -6.2 3.8 -120.4 -27.7

Reallocation 11.4 0.9 18.1 1.5 1.5 10.7 -15.1 29.5

Entry 2.8 7.9 1.3 4.5 4.0 13.5 123.8 0.0

Exit -1.7 -5.5 -2.6 -2.5 -2.1 -1.9 -5.4 -21.6

Avg P Index1 66.2 76.9 72.0 87.6 26.6 37.6 353.9 334.2

Avg P Index2 79.2 82.8 88.2 84.9 27.4 42.3 336.5 320.3

Other Printing & Wood Apparel

Chemicals Publishing Products

'79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86

Total Change -40.6 -32.5 -3.7 -0.7 -0.9 -13.2 21.0 131.3

Productivity -46.8 -41.0 -4.0 -0.9 -6.7 -14.8 -15.5 150.8

Reallocation 7.1 10.4 0.3 0.2 -1.0 6.3 41.3 -29.8

Entry 4.6 2.2 0.2 0.2 10.2 2.4 1.8 29.8

Exit -5.5 -4.1 -0.2 -0.2 -3.4 -7.1 -6.6 -19.5

Avg P Index1 126.6 94.1 5.7 3.4 33.0 26.1 120.6 215.1

Avg P Index2 137.4 97.8 6.3 3.7 31.7 30.0 162.1 205.4

Notes: Change in Industry Productivity is de�ned as the di�erence between last- and �rst-year
industry productivity, where industry productivity is the sum over plants of plant productivity
(omega) times share of value-added. The \Reallocation" component of the total change is the
weighted sum over continuing plants of �nal-year productivity, with each plant's change in market
share as its weight. The \Productivity" component is the weighted sum over continuing plants of
�nal-year minus initial- year productivity, with each plant's initial-year market share as its weight.
The \Entry" component is the sum over plants that enter between the initial and �nal years of
�nal-year productivity times market share, and the \Exit" component is the sum over plants that
exit between the initial and �nal years of initial-year productivity times market share. Average
P Index 1 is the average of initial-year and �nal-year industry productivity. The market shares
of �rms that appear or disappear between the initial and �nal year are re-allocated to continuing
�rms. Average P Index 2 is the average over all years between the initial and �nal year (inclusive)
of industry productivity, with no adjustments made for appearing and disappearing �rms.



TABLE 7

OLS Productivity Decompositions

Metals Textiles Food Products Beverages

'79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86

Total Change 28.17 -35.78 38.04 3.12 -7.21 52.04 -15.83 -3.46

Productivity 11.50 -37.00 10.79 4.56 -15.37 6.46 -43.54 -8.87

Reallocation 15.41 -0.29 29.58 4.17 3.44 23.73 -4.03 15.86

Entry 3.51 9.50 2.16 7.57 9.44 25.63 33.72 0.01

Exit -2.25 -7.98 -4.49 -4.05 -4.71 -3.79 -1.98 -10.46

Avg P Index1 84.79 99.49 121.67 148.95 61.0 82.04 117.74 107.28

Avg P Index2 102.92 108.68 149.37 143.90 61.46 90.55 107.39 101.46

Other Printing & Wood Apparel

Chemicals Publishing Products

'79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86 '79-'83 '83-'86

Total Change -32.14 -27.29 -51.44 -9.13 9.05 -102.51 41.57 72.77

Productivity -36.70 -34.58 -55.42 -9.94 -29.00 -76.58 -7.23 71.14

Reallocation 5.24 8.86 3.92 1.31 -3.58 22.96 55.41 -7.55

Entry 3.76 1.91 1.52 1.13 58.20 10.60 2.39 39.97

Exit -4.44 -3.48 -1.46 -1.63 -16.57 -59.50 -8.99 -30.79

Avg P Index1 105.47 79.43 90.24 60.34 178.51 131.57 157.34 233.37

Avg P Index2 114.64 83.07 104.51 64.68 162.12 157.90 208.92 238.84

Notes: See notes to Table 6.


